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About 100 times less interactions needed compared 
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Only pairwise. Given a set of systems, quadratic 
comparisons are required. Often prohibitive.
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Interleaved Comparisons
[2]   T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[3]   T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of 
       implicit feedback from clicks and query reformulations in Web search. In ACM TOIS,  2007. 
[4]   F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM, 2008.

A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.

Probabilistic Multileaved Comparisons (PM)

Multileaved Comparisons (TDM) [5]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast online 
       evaluation. In CIKM, 2014.
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Highly sensitive, within subject design. 
Even more sensitive than interleaving, depending 
on the number of systems and result list length.
Many rankings at a time. But not many more than 
can be represented in the result list.
No reuse of historical interaction data.
Comparisons always involve a user.

Highly sensitive, within subject design. 
As sensitive as TDM Multileaved comparisons.
Unlimited number of systems at a time. 
Reuse of historical interaction data is possible. 
Sets of new systems can be compared using 
historical clicks.

Consider sample of 
all possible team 

assignments

Outcome 
weighted by 
probability of 
assignment
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for each system

Still, systems 
with most 
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Multileaving is 
created by sampling 

documents from 
probabilistic rankings

Rankings made probabilistic by 
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... ...

Remembering team 
assignments is not 
required anymore

All users now see 
a multileaving of 

all systems

Sizes of sample 
of assignments

Probabilistic 
Interleave also 

reuses historical 
interaction data

Limited number 
of systems can 
be represented

Outcome is now a 
ranking over systems

Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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agreement nr 312827 (VOX-Pol), the Netherlands Organisation for Scientific
Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10,
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the Dutch national program COMMIT, the ESF Research Network Program
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
Acknowledgements. This research was partially supported by the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement nr 312827 (VOX-Pol), the Netherlands Organisation for Scientific
Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10,
640.006.013, 612.066.930, CI-14-25, SH-322-15, Amsterdam Data Science,
the Dutch national program COMMIT, the ESF Research Network Program
ELIAS, the Elite Network Shifts project funded by the Royal Dutch Academy
of Sciences (KNAW), the Netherlands eScience Center under project number
027.012.105, the Yahoo! Faculty Research and Engagement Program, the
Microsoft Research PhD program, and the HPC Fund.

REFERENCES
[1] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale

validation and analysis of interleaved search evaluation. ACM Trans.
Inf. Syst., 30(1), 2012.

[2] C. W. Cleverdon, J. Mills, and M. Keen. Factors determining the
performance of indexing systems. Aslib cranfield project, Cranfield:
College of Aeronautics, 1966.

[3] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in
web search. In WSDM ’09. ACM, 2009.

[4] J. He, C. Zhai, and X. Li. Evaluation of methods for relative
comparison of retrieval systems based on clickthroughs. In CIKM ’09.
ACM, 2009.

[5] K. Hofmann. Fast and Reliably Online Learning to Rank for
Information Retrieval. PhD thesis, University of Amsterdam, 2013.

[6] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method
for inferring preferences from clicks. In CIKM ’11. ACM, 2011.

[7] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing
historical interaction data for faster online learning to rank for IR. In
WSDM ’13. ACM, 2013.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[9] T. Joachims. Optimizing search engines using clickthrough data. In
KDD ’02. ACM, 2002.

[10] T. Joachims. Evaluating retrieval performance using clickthrough data.
In Text Mining. Physica/Springer, 2003.

[11] T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and
G. Gay. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in Web search. ACM Trans. Inf. Syst., 25(2),
2007.

[12] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne.
Controlled experiments on the web: survey and practical guide. Data
Mining and Knowledge Discovery, 18(1):140–181, 2009.

[13] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark
dataset for research on learning to rank for information retrieval. In
LR4IR ’07, 2007.

[14] F. Radlinski and N. Craswell. Optimized interleaving for online
retrieval evaluation. In WSDM ’13. ACM, 2013.

[15] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data
reflect retrieval quality? In CIKM ’08. ACM, 2008.

[16] M. Sanderson. Test collection based evaluation of information
retrieval systems. Found. & Tr. Inform. Retr., 4(4):247–375, 2010.

[17] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An
online learning to rank framework. In LivingLab ’13. ACM, 2013.

[18] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke.
Multileaved comparisons for fast online evaluation. In CIKM ’14,
pages 71–80. ACM, 2014.

[19] A. Schuth, K. Hofmann, and F. Radlinski. Predicting search
satisfaction metrics with interleaved comparisons. In SIGIR’15. ACM,
2015.

[20] E. M. Voorhees and D. K. Harman. TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 2005.

Preference Error after 500 impressions
perfect navigational informational

Clicks from these 
users are very noisy

+

+
+

+

+/-

-

+

-

+
-

This research was partially supported by Amsterdam Data Science, the Dutch national program COMMIT, Elsevier, the European Community's Seventh Framework 
Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the ESF Research Network Program ELIAS, the HPC Fund, the Royal Dutch Academy of 
Sciences (KNAW) under the Elite Network Shifts project, the Microsoft Research Ph.D. program, the Netherlands eScience Center under project number 027.012.105, 
the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10, 
640.006.013, 612.066.930, CI-14-25, SH-322-15, the Yahoo! Faculty Research and Engagement Program, Yandex, and an ACM SIGIR Student Travel Grant.

SIGIR 2015 - Santiago - Chili

A
system

B
system

or



Predicting Search Satisfaction Metrics  
with Interleaved Comparisons

5

Motivation - AB Testing

✤ User population divided into two groups
✤ Trusted and sophisticated metrics

Probabilistic Multileave for Online Retrieval Evaluation

University of Amsterdam

Anne Schuth, Robert-Jan Bruintjes, Fritjof Büttner, Joost van Doorn, 
Carla Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bas Veeling, 

Jos van der Velde, Roger Wechsler, David Woudenberg, Maarten de Rijke
anne.schuth@uva.nl

Sensitive, within subject design. 
About 100 times less interactions needed compared 
to A/B testing. 
Only pairwise. Given a set of systems, quadratic 
comparisons are required. Often prohibitive.

firstname.lastname@student.uva.nl derijke@uva.nl

Interleaved Comparisons
[2]   T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[3]   T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of 
       implicit feedback from clicks and query reformulations in Web search. In ACM TOIS,  2007. 
[4]   F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM, 2008.

A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.

Probabilistic Multileaved Comparisons (PM)

Multileaved Comparisons (TDM) [5]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast online 
       evaluation. In CIKM, 2014.

A
system

B
system

A
system

B
system

A
system

B
system

C
system

D
system

A
system

B
system

Y
system

Z
system

...

...

...

Highly sensitive, within subject design. 
Even more sensitive than interleaving, depending 
on the number of systems and result list length.
Many rankings at a time. But not many more than 
can be represented in the result list.
No reuse of historical interaction data.
Comparisons always involve a user.

Highly sensitive, within subject design. 
As sensitive as TDM Multileaved comparisons.
Unlimited number of systems at a time. 
Reuse of historical interaction data is possible. 
Sets of new systems can be compared using 
historical clicks.

Consider sample of 
all possible team 

assignments

Outcome 
weighted by 
probability of 
assignment

There are teams 
for each system

Still, systems 
with most 
clicks wins

Multileaving is 
created by sampling 

documents from 
probabilistic rankings

Rankings made probabilistic by 
applying a softmax function 

... ...

Remembering team 
assignments is not 
required anymore

All users now see 
a multileaving of 

all systems

Sizes of sample 
of assignments

Probabilistic 
Interleave also 

reuses historical 
interaction data

Limited number 
of systems can 
be represented

Outcome is now a 
ranking over systems

Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.
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       evaluation. In CIKM, 2014.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
Acknowledgements. This research was partially supported by the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement nr 312827 (VOX-Pol), the Netherlands Organisation for Scientific
Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10,
640.006.013, 612.066.930, CI-14-25, SH-322-15, Amsterdam Data Science,
the Dutch national program COMMIT, the ESF Research Network Program
ELIAS, the Elite Network Shifts project funded by the Royal Dutch Academy
of Sciences (KNAW), the Netherlands eScience Center under project number
027.012.105, the Yahoo! Faculty Research and Engagement Program, the
Microsoft Research PhD program, and the HPC Fund.

REFERENCES
[1] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale

validation and analysis of interleaved search evaluation. ACM Trans.
Inf. Syst., 30(1), 2012.

[2] C. W. Cleverdon, J. Mills, and M. Keen. Factors determining the
performance of indexing systems. Aslib cranfield project, Cranfield:
College of Aeronautics, 1966.

[3] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in
web search. In WSDM ’09. ACM, 2009.

[4] J. He, C. Zhai, and X. Li. Evaluation of methods for relative
comparison of retrieval systems based on clickthroughs. In CIKM ’09.
ACM, 2009.

[5] K. Hofmann. Fast and Reliably Online Learning to Rank for
Information Retrieval. PhD thesis, University of Amsterdam, 2013.

[6] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method
for inferring preferences from clicks. In CIKM ’11. ACM, 2011.

[7] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing
historical interaction data for faster online learning to rank for IR. In
WSDM ’13. ACM, 2013.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[9] T. Joachims. Optimizing search engines using clickthrough data. In
KDD ’02. ACM, 2002.

[10] T. Joachims. Evaluating retrieval performance using clickthrough data.
In Text Mining. Physica/Springer, 2003.

[11] T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and
G. Gay. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in Web search. ACM Trans. Inf. Syst., 25(2),
2007.

[12] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne.
Controlled experiments on the web: survey and practical guide. Data
Mining and Knowledge Discovery, 18(1):140–181, 2009.

[13] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark
dataset for research on learning to rank for information retrieval. In
LR4IR ’07, 2007.

[14] F. Radlinski and N. Craswell. Optimized interleaving for online
retrieval evaluation. In WSDM ’13. ACM, 2013.

[15] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data
reflect retrieval quality? In CIKM ’08. ACM, 2008.

[16] M. Sanderson. Test collection based evaluation of information
retrieval systems. Found. & Tr. Inform. Retr., 4(4):247–375, 2010.

[17] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An
online learning to rank framework. In LivingLab ’13. ACM, 2013.

[18] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke.
Multileaved comparisons for fast online evaluation. In CIKM ’14,
pages 71–80. ACM, 2014.

[19] A. Schuth, K. Hofmann, and F. Radlinski. Predicting search
satisfaction metrics with interleaved comparisons. In SIGIR’15. ACM,
2015.

[20] E. M. Voorhees and D. K. Harman. TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 2005.

Preference Error after 500 impressions
perfect navigational informational

Clicks from these 
users are very noisy

+

+
+

+

+/-

-

+

-

+
-

This research was partially supported by Amsterdam Data Science, the Dutch national program COMMIT, Elsevier, the European Community's Seventh Framework 
Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the ESF Research Network Program ELIAS, the HPC Fund, the Royal Dutch Academy of 
Sciences (KNAW) under the Elite Network Shifts project, the Microsoft Research Ph.D. program, the Netherlands eScience Center under project number 027.012.105, 
the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10, 
640.006.013, 612.066.930, CI-14-25, SH-322-15, the Yahoo! Faculty Research and Engagement Program, Yandex, and an ACM SIGIR Student Travel Grant.

SIGIR 2015 - Santiago - Chili

A
system

B
system

or



Predicting Search Satisfaction Metrics  
with Interleaved Comparisons

6

Motivation - Interleaving

✤ All users see both systems
✤ Simple metric: system with more clicks wins
✤ Within subject design 

❖ Both systems now cater for every user 
❖ High sensitivity, 10-100x less queries 

needed (compared to AB Testing)

Probabilistic Multileave for Online Retrieval Evaluation

University of Amsterdam

Anne Schuth, Robert-Jan Bruintjes, Fritjof Büttner, Joost van Doorn, 
Carla Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bas Veeling, 

Jos van der Velde, Roger Wechsler, David Woudenberg, Maarten de Rijke
anne.schuth@uva.nl

Sensitive, within subject design. 
About 100 times less interactions needed compared 
to A/B testing. 
Only pairwise. Given a set of systems, quadratic 
comparisons are required. Often prohibitive.

firstname.lastname@student.uva.nl derijke@uva.nl

Interleaved Comparisons
[2]   T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[3]   T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of 
       implicit feedback from clicks and query reformulations in Web search. In ACM TOIS,  2007. 
[4]   F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM, 2008.

A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.

Probabilistic Multileaved Comparisons (PM)

Multileaved Comparisons (TDM) [5]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast online 
       evaluation. In CIKM, 2014.

A
system

B
system

A
system

B
system

A
system

B
system

C
system

D
system

A
system

B
system

Y
system

Z
system

...

...

...

Highly sensitive, within subject design. 
Even more sensitive than interleaving, depending 
on the number of systems and result list length.
Many rankings at a time. But not many more than 
can be represented in the result list.
No reuse of historical interaction data.
Comparisons always involve a user.

Highly sensitive, within subject design. 
As sensitive as TDM Multileaved comparisons.
Unlimited number of systems at a time. 
Reuse of historical interaction data is possible. 
Sets of new systems can be compared using 
historical clicks.

Consider sample of 
all possible team 

assignments

Outcome 
weighted by 
probability of 
assignment

There are teams 
for each system

Still, systems 
with most 
clicks wins

Multileaving is 
created by sampling 

documents from 
probabilistic rankings

Rankings made probabilistic by 
applying a softmax function 

... ...

Remembering team 
assignments is not 
required anymore

All users now see 
a multileaving of 

all systems

Sizes of sample 
of assignments

Probabilistic 
Interleave also 

reuses historical 
interaction data

Limited number 
of systems can 
be represented

Outcome is now a 
ranking over systems

Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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       implicit feedback from clicks and query reformulations in Web search. In ACM TOIS,  2007. 
[4]   F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM, 2008.

A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.

Probabilistic Multileaved Comparisons (PM)

Multileaved Comparisons (TDM) [5]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast online 
       evaluation. In CIKM, 2014.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
Acknowledgements. This research was partially supported by the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement nr 312827 (VOX-Pol), the Netherlands Organisation for Scientific
Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10,
640.006.013, 612.066.930, CI-14-25, SH-322-15, Amsterdam Data Science,
the Dutch national program COMMIT, the ESF Research Network Program
ELIAS, the Elite Network Shifts project funded by the Royal Dutch Academy
of Sciences (KNAW), the Netherlands eScience Center under project number
027.012.105, the Yahoo! Faculty Research and Engagement Program, the
Microsoft Research PhD program, and the HPC Fund.

REFERENCES
[1] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale

validation and analysis of interleaved search evaluation. ACM Trans.
Inf. Syst., 30(1), 2012.

[2] C. W. Cleverdon, J. Mills, and M. Keen. Factors determining the
performance of indexing systems. Aslib cranfield project, Cranfield:
College of Aeronautics, 1966.

[3] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in
web search. In WSDM ’09. ACM, 2009.

[4] J. He, C. Zhai, and X. Li. Evaluation of methods for relative
comparison of retrieval systems based on clickthroughs. In CIKM ’09.
ACM, 2009.

[5] K. Hofmann. Fast and Reliably Online Learning to Rank for
Information Retrieval. PhD thesis, University of Amsterdam, 2013.

[6] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method
for inferring preferences from clicks. In CIKM ’11. ACM, 2011.

[7] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing
historical interaction data for faster online learning to rank for IR. In
WSDM ’13. ACM, 2013.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[9] T. Joachims. Optimizing search engines using clickthrough data. In
KDD ’02. ACM, 2002.

[10] T. Joachims. Evaluating retrieval performance using clickthrough data.
In Text Mining. Physica/Springer, 2003.

[11] T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and
G. Gay. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in Web search. ACM Trans. Inf. Syst., 25(2),
2007.

[12] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne.
Controlled experiments on the web: survey and practical guide. Data
Mining and Knowledge Discovery, 18(1):140–181, 2009.

[13] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark
dataset for research on learning to rank for information retrieval. In
LR4IR ’07, 2007.

[14] F. Radlinski and N. Craswell. Optimized interleaving for online
retrieval evaluation. In WSDM ’13. ACM, 2013.

[15] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data
reflect retrieval quality? In CIKM ’08. ACM, 2008.

[16] M. Sanderson. Test collection based evaluation of information
retrieval systems. Found. & Tr. Inform. Retr., 4(4):247–375, 2010.

[17] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An
online learning to rank framework. In LivingLab ’13. ACM, 2013.

[18] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke.
Multileaved comparisons for fast online evaluation. In CIKM ’14,
pages 71–80. ACM, 2014.

[19] A. Schuth, K. Hofmann, and F. Radlinski. Predicting search
satisfaction metrics with interleaved comparisons. In SIGIR’15. ACM,
2015.

[20] E. M. Voorhees and D. K. Harman. TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 2005.

Preference Error after 500 impressions
perfect navigational informational

Clicks from these 
users are very noisy

+

+
+

+

+/-

-

+

-

+
-

This research was partially supported by Amsterdam Data Science, the Dutch national program COMMIT, Elsevier, the European Community's Seventh Framework 
Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the ESF Research Network Program ELIAS, the HPC Fund, the Royal Dutch Academy of 
Sciences (KNAW) under the Elite Network Shifts project, the Microsoft Research Ph.D. program, the Netherlands eScience Center under project number 027.012.105, 
the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10, 
640.006.013, 612.066.930, CI-14-25, SH-322-15, the Yahoo! Faculty Research and Engagement Program, Yandex, and an ACM SIGIR Student Travel Grant.

SIGIR 2015 - Santiago - Chili

A
system

B
system

or

✤ AB Testing + Sophisticated metrics 
(position, SAT, time) 

- Between subject



Predicting Search Satisfaction Metrics  
with Interleaved Comparisons

11

Motivation - Agreement

Probabilistic Multileave for Online Retrieval Evaluation

University of Amsterdam

Anne Schuth, Robert-Jan Bruintjes, Fritjof Büttner, Joost van Doorn, 
Carla Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bas Veeling, 

Jos van der Velde, Roger Wechsler, David Woudenberg, Maarten de Rijke
anne.schuth@uva.nl

Sensitive, within subject design. 
About 100 times less interactions needed compared 
to A/B testing. 
Only pairwise. Given a set of systems, quadratic 
comparisons are required. Often prohibitive.

firstname.lastname@student.uva.nl derijke@uva.nl

Interleaved Comparisons
[2]   T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[3]   T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of 
       implicit feedback from clicks and query reformulations in Web search. In ACM TOIS,  2007. 
[4]   F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM, 2008.

A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.

Probabilistic Multileaved Comparisons (PM)

Multileaved Comparisons (TDM) [5]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast online 
       evaluation. In CIKM, 2014.

A
system

B
system

A
system

B
system

A
system

B
system

C
system

D
system

A
system

B
system

Y
system

Z
system

...

...

...

Highly sensitive, within subject design. 
Even more sensitive than interleaving, depending 
on the number of systems and result list length.
Many rankings at a time. But not many more than 
can be represented in the result list.
No reuse of historical interaction data.
Comparisons always involve a user.

Highly sensitive, within subject design. 
As sensitive as TDM Multileaved comparisons.
Unlimited number of systems at a time. 
Reuse of historical interaction data is possible. 
Sets of new systems can be compared using 
historical clicks.

Consider sample of 
all possible team 

assignments

Outcome 
weighted by 
probability of 
assignment

There are teams 
for each system

Still, systems 
with most 
clicks wins

Multileaving is 
created by sampling 

documents from 
probabilistic rankings

Rankings made probabilistic by 
applying a softmax function 

... ...

Remembering team 
assignments is not 
required anymore

All users now see 
a multileaving of 

all systems

Sizes of sample 
of assignments

Probabilistic 
Interleave also 

reuses historical 
interaction data

Limited number 
of systems can 
be represented

Outcome is now a 
ranking over systems

Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
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Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
Acknowledgements. This research was partially supported by the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement nr 312827 (VOX-Pol), the Netherlands Organisation for Scientific
Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10,
640.006.013, 612.066.930, CI-14-25, SH-322-15, Amsterdam Data Science,
the Dutch national program COMMIT, the ESF Research Network Program
ELIAS, the Elite Network Shifts project funded by the Royal Dutch Academy
of Sciences (KNAW), the Netherlands eScience Center under project number
027.012.105, the Yahoo! Faculty Research and Engagement Program, the
Microsoft Research PhD program, and the HPC Fund.

REFERENCES
[1] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale

validation and analysis of interleaved search evaluation. ACM Trans.
Inf. Syst., 30(1), 2012.

[2] C. W. Cleverdon, J. Mills, and M. Keen. Factors determining the
performance of indexing systems. Aslib cranfield project, Cranfield:
College of Aeronautics, 1966.

[3] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in
web search. In WSDM ’09. ACM, 2009.

[4] J. He, C. Zhai, and X. Li. Evaluation of methods for relative
comparison of retrieval systems based on clickthroughs. In CIKM ’09.
ACM, 2009.

[5] K. Hofmann. Fast and Reliably Online Learning to Rank for
Information Retrieval. PhD thesis, University of Amsterdam, 2013.

[6] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method
for inferring preferences from clicks. In CIKM ’11. ACM, 2011.

[7] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing
historical interaction data for faster online learning to rank for IR. In
WSDM ’13. ACM, 2013.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[9] T. Joachims. Optimizing search engines using clickthrough data. In
KDD ’02. ACM, 2002.

[10] T. Joachims. Evaluating retrieval performance using clickthrough data.
In Text Mining. Physica/Springer, 2003.

[11] T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and
G. Gay. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in Web search. ACM Trans. Inf. Syst., 25(2),
2007.

[12] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne.
Controlled experiments on the web: survey and practical guide. Data
Mining and Knowledge Discovery, 18(1):140–181, 2009.

[13] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark
dataset for research on learning to rank for information retrieval. In
LR4IR ’07, 2007.

[14] F. Radlinski and N. Craswell. Optimized interleaving for online
retrieval evaluation. In WSDM ’13. ACM, 2013.

[15] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data
reflect retrieval quality? In CIKM ’08. ACM, 2008.

[16] M. Sanderson. Test collection based evaluation of information
retrieval systems. Found. & Tr. Inform. Retr., 4(4):247–375, 2010.

[17] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An
online learning to rank framework. In LivingLab ’13. ACM, 2013.

[18] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke.
Multileaved comparisons for fast online evaluation. In CIKM ’14,
pages 71–80. ACM, 2014.

[19] A. Schuth, K. Hofmann, and F. Radlinski. Predicting search
satisfaction metrics with interleaved comparisons. In SIGIR’15. ACM,
2015.

[20] E. M. Voorhees and D. K. Harman. TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 2005.

Preference Error after 500 impressions
perfect navigational informational

Clicks from these 
users are very noisy

+

+
+

+

+/-

-

+

-

+
-

This research was partially supported by Amsterdam Data Science, the Dutch national program COMMIT, Elsevier, the European Community's Seventh Framework 
Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the ESF Research Network Program ELIAS, the HPC Fund, the Royal Dutch Academy of 
Sciences (KNAW) under the Elite Network Shifts project, the Microsoft Research Ph.D. program, the Netherlands eScience Center under project number 027.012.105, 
the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10, 
640.006.013, 612.066.930, CI-14-25, SH-322-15, the Yahoo! Faculty Research and Engagement Program, Yandex, and an ACM SIGIR Student Travel Grant.

SIGIR 2015 - Santiago - Chili

A
system

B
system

or

✤ AB Testing

✤ Interleaving

+ Sophisticated metrics 
(position, SAT, time) 

- Just count clicks

+ Within subject

- Between subject



Predicting Search Satisfaction Metrics  
with Interleaved Comparisons

11

Motivation - Agreement

Probabilistic Multileave for Online Retrieval Evaluation

University of Amsterdam

Anne Schuth, Robert-Jan Bruintjes, Fritjof Büttner, Joost van Doorn, 
Carla Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bas Veeling, 

Jos van der Velde, Roger Wechsler, David Woudenberg, Maarten de Rijke
anne.schuth@uva.nl

Sensitive, within subject design. 
About 100 times less interactions needed compared 
to A/B testing. 
Only pairwise. Given a set of systems, quadratic 
comparisons are required. Often prohibitive.

firstname.lastname@student.uva.nl derijke@uva.nl

Interleaved Comparisons
[2]   T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[3]   T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of 
       implicit feedback from clicks and query reformulations in Web search. In ACM TOIS,  2007. 
[4]   F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM, 2008.

A/B Testing [1]   R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey 
       and practical guide. In Data Mining and Knowledge Discovery, 2009.

Any metric can be measured using A/B testing
Not very sensitive, between subject design. 
Noise coming from differences between users and 
their queries.

Probabilistic Multileaved Comparisons (PM)

Multileaved Comparisons (TDM) [5]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast online 
       evaluation. In CIKM, 2014.

A
system

B
system

A
system

B
system

A
system

B
system

C
system

D
system

A
system

B
system

Y
system

Z
system

...

...

...

Highly sensitive, within subject design. 
Even more sensitive than interleaving, depending 
on the number of systems and result list length.
Many rankings at a time. But not many more than 
can be represented in the result list.
No reuse of historical interaction data.
Comparisons always involve a user.

Highly sensitive, within subject design. 
As sensitive as TDM Multileaved comparisons.
Unlimited number of systems at a time. 
Reuse of historical interaction data is possible. 
Sets of new systems can be compared using 
historical clicks.

Consider sample of 
all possible team 

assignments

Outcome 
weighted by 
probability of 
assignment

There are teams 
for each system

Still, systems 
with most 
clicks wins

Multileaving is 
created by sampling 

documents from 
probabilistic rankings

Rankings made probabilistic by 
applying a softmax function 

... ...

Remembering team 
assignments is not 
required anymore

All users now see 
a multileaving of 

all systems

Sizes of sample 
of assignments

Probabilistic 
Interleave also 

reuses historical 
interaction data

Limited number 
of systems can 
be represented

Outcome is now a 
ranking over systems

Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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Table 1: Mean Ebin scores after 500 impressions for PM and
SPM compared to baselines PI (first symbol) and TDM (second
symbol). The symbol N means statistically better with p < 0.01

and M for p < 0.05, whereas H and O are their inverses.
perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)
TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 10

2) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 10

3) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 10

4) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-
PM(n = 10

5) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

Figure 2: The error is plotted against the number of queries.
The error was evaluated by comparing to a ground truth of no

preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by
a random instantiation of CCM [3].
lower error than PI and when there are enough samples (n � 100)
statistically significantly so. However, when the number of samples
is too small, PM is outperformed significantly by TDM. When
the number of samples increases sufficiently, PM is on par with
TDM in terms of sensitivity. Interestingly, when noise increases,
performance of PM decreases less compared to TDM.

In terms of bias, we see in Figure 2 that PM is on par with TDM.
Both methods only need about 100 impressions from a random user
to conclude that no preferences between rankers can be inferred.
Again naturally, PI needs much more query impressions to draw the
same conclusion because it needs to compare all pairs of rankers.
PM is as unbiased as TDM, irrespective of the number of samples.

Lastly, we investigate what happens when the number of rankers
|R| that are being compared increases from the five rankers used
until now. We test this with |R| = 20 and find that after 500
navigational query impressions for PI, Ebin = 0.56, for TDM
Ebin = 0.15, and for PM(n = 10

4) we find Ebin = 0.13. The
advantage of multileaving over interleaving is clearly shown by these
numbers. But moreover, PM clearly outperforms TDM when the
number of rankers increases. We confirm a finding from Schuth et al.
[18] who showed this to be an inherent disadvantage of TDM as it
needs to represent al rankers with teams in the multileaving. PM,
because it marginalizes over all possible team assignments, does
not have this drawback and still performs well when the number of
rankers goes up.
5. CONCLUSION

We have introduced a new method for online ranker evaluation
called probabilistic multileave (PM). PM extends probabilistic inter-
leave (PI) such that it can compare more than two rankers at once,
while keeping PI’s characteristic of being able to reuse historical
interaction data. We empirically compared PM to PI as well as an
earlier multileaving method called team draft multileave (TDM).
The new method infers preferences between rankers by marginaliz-
ing over a sample of possible team assignments. We use a sample
of controlled size to keep the computation tractable and show ex-

perimentally that given a large enough sample, our method is both
as sensitive and as unbiased as TDM and more so than PI. That is,
PM is capable of quickly finding meaningful differences between
rankers and it does not infer preferences where it should not.

An important implication of this work is that historical interac-
tions with multileaved comparisons can be reused, allowing for
ranker comparisons that need much less user interaction data. Fur-
thermore, we show that our method, as opposed to earlier sensitive
multileaving methods, scales well when the number of rankers in-
creases.
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✤ Click volume
❖ AB: ~1 week, high volume
❖ Interleaving: ~4 days, low volume
❖ ~80 times more queries for AB
❖ ~3 billion clicks

These are our datapoints
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Data - Analysis - Sensitivity (Power)

✤ How many queries are required for statistically 
significant conclusions?

✤ Sensitivity (power) analysis 
❖ alpha=0.05, two sided 
❖ AB Testing: independent t-test 
❖ Interleaving (TDI): paired t-test
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1
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nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10
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6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.
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Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
�AB = (µA � µB)/

p
1/nA + 1/nB�, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance �AB) we observe sample A,B and compute the test

statistic [19]: t(A,B) =

(Ā�B̄)q
1

nA
+ 1

nB

/
qP

(Ai�Ā)2+
P

(Bj�B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution ¯A �
¯B ⇠ nct(�AB , vAB), with non-centrality parameter �AB (the effect
size, from above) and degrees of freedom vAB = nA + nB � 2.

H0 is correctly rejected when t(A,B) � C0. The power of the
test is the probability P (reject(H0)|H1) = P (t(A,B) � C0)

and can be computed (solved using linear programming2):

P (t(A,B) � C0) =

Z 1

C0

nct(�AB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ⇠ N (µI ,�I). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ⇠ nct(�I , vI) with non-centrality parameter �I =

p
nµI/�I

and vI = nI � 1 degrees of freedom. The power calculation is3

P (t(I) � C0) =

Z 1

C0

nct(�I , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB ,�AB : µA � µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (

¯A � ¯B > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI ,�I would agree with the same outcome is com-
puted using Equation (3) so that P (

¯I > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 10

7 and 10

8 observations (queries). On
the other hand, the same power is obtained with between 10

5 and
10

6 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.

power.tt_ind_solve_power, http://statsmodels.

sourceforge.net/

3We use the python implementation statsmodels.stats.

power.tt_solve_power.

4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT@1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.
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Table 4: Agreement of matching interleaving credit functions (designed to match AB metric parameters). Boldface indicates values
significantly different from 0.5 (two-sided binomial test, p = 0.05). On the diagonal are metrics for which parameters are designed to
match (gray background). Best agreement per AB metric is underlined.

Interleaving Credit
AB Metric TDI TDI@1 TDIS TDIS@1 TDIT TDIT@1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53
AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55
ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55
ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50
ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58
ABT@1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.61
ABT,S 0.47 0.55 0.53 0.71 0.66 0.66 0.58 0.53
ABT,S@1 0.42 0.50 0.53 0.66 0.61 0.66 0.58 0.58
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Figure 2: Power for TDI with matching credit functions (assum-
ing two-sided t-test with p = 0.05, as described in Section 4.2).
The black line denotes ABS , the AB metric with most power.
As we study 8 AB metrics, this gives rise to 8 possible variants of
TDI with matching credit functions.

Table 4 shows the agreement between each AB metric and each
variant of TDI. In the first column, we see the agreement between
baseline TDI and each AB metric, computing each as previously
defined. The lowest agreement is observed between the original
TDI and the AB metric ABT,S@1, at 42%. The highest agreement
is observed between TDIS and the AB metric it is designed to opti-
mize (ABS), with 87%. Given the small sample of 38 comparisons,
only the agreement rates above 68% are statistically significantly
different from random agreement, and are shown in bold in the table.
These compare favorably with typical inter-judge agreement rates
in offline evaluations of around 65% [32], and with the bounds on
AB self-agreement ABSub, ABUp in Table 2.

We note that using different credit functions often increases agree-
ment between AB metrics and TDI, but interestingly the maximal
agreement is often not seen when the AB metric matches the credit
function used for interleaving. This can be observed by comparing
the metrics that match in terms of their parameters (indicated by the
gray cells in Table 4), to the ones that achieved highest agreement
(underlined). For example, agreement with ABS is maximized by
TDIS , but agreement with ABT,S is maximized by TDIS@1. A
reason for this is the interplay between bias and noise. By more
aggressively removing noise in the interleaving comparison (in this
case, by only considering SAT clicks at the top position), we may
increase agreement with related AB metrics, even those for which
there is bias due to a slight mismatch between the interleaving and
AB metric.

Our results show that agreement between interleaving and AB
comparisons can be substantially improved by matching interleav-
ing credit parameters to those of the target AB metrics. We also

need to ensure that in doing so, we do not decrease the sensitivity of
interleaving. Intuitively, removing observations (e.g., clicks beyond
the first position) may reduce sensitivity. On the other hand, if the
removed observations are noisy, the interleaving signal may actu-
ally become more discriminative, and sensitivity can be increased.
Figure 2 shows the power for TDI with replaced scoring functions.
We see that TDI with matching credit functions typically has lower
power than standard TDI. In particular, sensitivity decreases for
time-based metrics, which may also explain the relatively lower
agreement between time-based interleaving credit functions and AB
metrics. However, the power of these variants of TDI is still 1 to 2
orders of magnitude larger than the power of the AB metric with
most power. Sensitivity is increased by TDIS , the credit function
that also shows highest agreement. This result indicates that fo-
cusing interleaving credit on low-noise clicks is a very promising
way to achieve both high sensitivity and good agreement with user
satisfaction metrics.

The results of the analysis in this section motivate the next set of
questions. Given a target AB metric, what is the best credit function
that should be applied to TDI? Just as the correct credit function
may not be the same as the target AB metric, the parameters of the
credit function may need to be tuned. And, once we automatically
optimize the parameters of interleaving credit functions, to what
degree do optimal values generalize to unseen ranker comparisons?
We address these questions next.

6.2 Parameterized Credit Functions
One way to increase agreement of TDI with AB metrics is to take

an interleaving credit function with parameters (see Section 5.3)
and tune the parameters towards a given AB metric. For instance,
previous work has shown that it is possible to estimate the probability
that a given click indicates user satisfaction [16]. While an AB
metric such as ABS must incorporate a threshold below which
clicks are not considered to indicate user satisfaction, the threshold
for TDI need not be the same. Rather, we can find the optimal
threshold ts for TDItsS at which to consider a click as satisfied.
This optimization procedure might lead to reduced variance, and
thereby increase agreement with AB metrics.

We use the maximization procedure described in Section 5.5 and
in particular Equation (10) to find an optimal threshold for each AB
metric we consider. Note that, as opposed to experiments in the
previous section, here we obtain averages over N = 100 iterations
of the maximization procedure, instead of averages over the 38
comparisons. This allows us to perform statistical significance
testing using a one-sample two-sided student’s t-test. In our result
table we indicate statistically significant improvements over TDI
by N (p < 0.01) (losses H). Also, as opposed to before, we now
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Table 4: Agreement of matching interleaving credit functions (designed to match AB metric parameters). Boldface indicates values
significantly different from 0.5 (two-sided binomial test, p = 0.05). On the diagonal are metrics for which parameters are designed to
match (gray background). Best agreement per AB metric is underlined.

Interleaving Credit
AB Metric TDI TDI@1 TDIS TDIS@1 TDIT TDIT@1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53
AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55
ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55
ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50
ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58
ABT@1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.61
ABT,S 0.47 0.55 0.53 0.71 0.66 0.66 0.58 0.53
ABT,S@1 0.42 0.50 0.53 0.66 0.61 0.66 0.58 0.58
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Figure 2: Power for TDI with matching credit functions (assum-
ing two-sided t-test with p = 0.05, as described in Section 4.2).
The black line denotes ABS , the AB metric with most power.
As we study 8 AB metrics, this gives rise to 8 possible variants of
TDI with matching credit functions.

Table 4 shows the agreement between each AB metric and each
variant of TDI. In the first column, we see the agreement between
baseline TDI and each AB metric, computing each as previously
defined. The lowest agreement is observed between the original
TDI and the AB metric ABT,S@1, at 42%. The highest agreement
is observed between TDIS and the AB metric it is designed to opti-
mize (ABS), with 87%. Given the small sample of 38 comparisons,
only the agreement rates above 68% are statistically significantly
different from random agreement, and are shown in bold in the table.
These compare favorably with typical inter-judge agreement rates
in offline evaluations of around 65% [32], and with the bounds on
AB self-agreement ABSub, ABUp in Table 2.

We note that using different credit functions often increases agree-
ment between AB metrics and TDI, but interestingly the maximal
agreement is often not seen when the AB metric matches the credit
function used for interleaving. This can be observed by comparing
the metrics that match in terms of their parameters (indicated by the
gray cells in Table 4), to the ones that achieved highest agreement
(underlined). For example, agreement with ABS is maximized by
TDIS , but agreement with ABT,S is maximized by TDIS@1. A
reason for this is the interplay between bias and noise. By more
aggressively removing noise in the interleaving comparison (in this
case, by only considering SAT clicks at the top position), we may
increase agreement with related AB metrics, even those for which
there is bias due to a slight mismatch between the interleaving and
AB metric.

Our results show that agreement between interleaving and AB
comparisons can be substantially improved by matching interleav-
ing credit parameters to those of the target AB metrics. We also

need to ensure that in doing so, we do not decrease the sensitivity of
interleaving. Intuitively, removing observations (e.g., clicks beyond
the first position) may reduce sensitivity. On the other hand, if the
removed observations are noisy, the interleaving signal may actu-
ally become more discriminative, and sensitivity can be increased.
Figure 2 shows the power for TDI with replaced scoring functions.
We see that TDI with matching credit functions typically has lower
power than standard TDI. In particular, sensitivity decreases for
time-based metrics, which may also explain the relatively lower
agreement between time-based interleaving credit functions and AB
metrics. However, the power of these variants of TDI is still 1 to 2
orders of magnitude larger than the power of the AB metric with
most power. Sensitivity is increased by TDIS , the credit function
that also shows highest agreement. This result indicates that fo-
cusing interleaving credit on low-noise clicks is a very promising
way to achieve both high sensitivity and good agreement with user
satisfaction metrics.

The results of the analysis in this section motivate the next set of
questions. Given a target AB metric, what is the best credit function
that should be applied to TDI? Just as the correct credit function
may not be the same as the target AB metric, the parameters of the
credit function may need to be tuned. And, once we automatically
optimize the parameters of interleaving credit functions, to what
degree do optimal values generalize to unseen ranker comparisons?
We address these questions next.

6.2 Parameterized Credit Functions
One way to increase agreement of TDI with AB metrics is to take

an interleaving credit function with parameters (see Section 5.3)
and tune the parameters towards a given AB metric. For instance,
previous work has shown that it is possible to estimate the probability
that a given click indicates user satisfaction [16]. While an AB
metric such as ABS must incorporate a threshold below which
clicks are not considered to indicate user satisfaction, the threshold
for TDI need not be the same. Rather, we can find the optimal
threshold ts for TDItsS at which to consider a click as satisfied.
This optimization procedure might lead to reduced variance, and
thereby increase agreement with AB metrics.

We use the maximization procedure described in Section 5.5 and
in particular Equation (10) to find an optimal threshold for each AB
metric we consider. Note that, as opposed to experiments in the
previous section, here we obtain averages over N = 100 iterations
of the maximization procedure, instead of averages over the 38
comparisons. This allows us to perform statistical significance
testing using a one-sample two-sided student’s t-test. In our result
table we indicate statistically significant improvements over TDI
by N (p < 0.01) (losses H). Also, as opposed to before, we now
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Table 4: Agreement of matching interleaving credit functions (designed to match AB metric parameters). Boldface indicates values
significantly different from 0.5 (two-sided binomial test, p = 0.05). On the diagonal are metrics for which parameters are designed to
match (gray background). Best agreement per AB metric is underlined.

Interleaving Credit
AB Metric TDI TDI@1 TDIS TDIS@1 TDIT TDIT@1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53
AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55
ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55
ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50
ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58
ABT@1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.61
ABT,S 0.47 0.55 0.53 0.71 0.66 0.66 0.58 0.53
ABT,S@1 0.42 0.50 0.53 0.66 0.61 0.66 0.58 0.58
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Figure 2: Power for TDI with matching credit functions (assum-
ing two-sided t-test with p = 0.05, as described in Section 4.2).
The black line denotes ABS , the AB metric with most power.
As we study 8 AB metrics, this gives rise to 8 possible variants of
TDI with matching credit functions.

Table 4 shows the agreement between each AB metric and each
variant of TDI. In the first column, we see the agreement between
baseline TDI and each AB metric, computing each as previously
defined. The lowest agreement is observed between the original
TDI and the AB metric ABT,S@1, at 42%. The highest agreement
is observed between TDIS and the AB metric it is designed to opti-
mize (ABS), with 87%. Given the small sample of 38 comparisons,
only the agreement rates above 68% are statistically significantly
different from random agreement, and are shown in bold in the table.
These compare favorably with typical inter-judge agreement rates
in offline evaluations of around 65% [32], and with the bounds on
AB self-agreement ABSub, ABUp in Table 2.

We note that using different credit functions often increases agree-
ment between AB metrics and TDI, but interestingly the maximal
agreement is often not seen when the AB metric matches the credit
function used for interleaving. This can be observed by comparing
the metrics that match in terms of their parameters (indicated by the
gray cells in Table 4), to the ones that achieved highest agreement
(underlined). For example, agreement with ABS is maximized by
TDIS , but agreement with ABT,S is maximized by TDIS@1. A
reason for this is the interplay between bias and noise. By more
aggressively removing noise in the interleaving comparison (in this
case, by only considering SAT clicks at the top position), we may
increase agreement with related AB metrics, even those for which
there is bias due to a slight mismatch between the interleaving and
AB metric.

Our results show that agreement between interleaving and AB
comparisons can be substantially improved by matching interleav-
ing credit parameters to those of the target AB metrics. We also

need to ensure that in doing so, we do not decrease the sensitivity of
interleaving. Intuitively, removing observations (e.g., clicks beyond
the first position) may reduce sensitivity. On the other hand, if the
removed observations are noisy, the interleaving signal may actu-
ally become more discriminative, and sensitivity can be increased.
Figure 2 shows the power for TDI with replaced scoring functions.
We see that TDI with matching credit functions typically has lower
power than standard TDI. In particular, sensitivity decreases for
time-based metrics, which may also explain the relatively lower
agreement between time-based interleaving credit functions and AB
metrics. However, the power of these variants of TDI is still 1 to 2
orders of magnitude larger than the power of the AB metric with
most power. Sensitivity is increased by TDIS , the credit function
that also shows highest agreement. This result indicates that fo-
cusing interleaving credit on low-noise clicks is a very promising
way to achieve both high sensitivity and good agreement with user
satisfaction metrics.

The results of the analysis in this section motivate the next set of
questions. Given a target AB metric, what is the best credit function
that should be applied to TDI? Just as the correct credit function
may not be the same as the target AB metric, the parameters of the
credit function may need to be tuned. And, once we automatically
optimize the parameters of interleaving credit functions, to what
degree do optimal values generalize to unseen ranker comparisons?
We address these questions next.

6.2 Parameterized Credit Functions
One way to increase agreement of TDI with AB metrics is to take

an interleaving credit function with parameters (see Section 5.3)
and tune the parameters towards a given AB metric. For instance,
previous work has shown that it is possible to estimate the probability
that a given click indicates user satisfaction [16]. While an AB
metric such as ABS must incorporate a threshold below which
clicks are not considered to indicate user satisfaction, the threshold
for TDI need not be the same. Rather, we can find the optimal
threshold ts for TDItsS at which to consider a click as satisfied.
This optimization procedure might lead to reduced variance, and
thereby increase agreement with AB metrics.

We use the maximization procedure described in Section 5.5 and
in particular Equation (10) to find an optimal threshold for each AB
metric we consider. Note that, as opposed to experiments in the
previous section, here we obtain averages over N = 100 iterations
of the maximization procedure, instead of averages over the 38
comparisons. This allows us to perform statistical significance
testing using a one-sample two-sided student’s t-test. In our result
table we indicate statistically significant improvements over TDI
by N (p < 0.01) (losses H). Also, as opposed to before, we now
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Table 4: Agreement of matching interleaving credit functions (designed to match AB metric parameters). Boldface indicates values
significantly different from 0.5 (two-sided binomial test, p = 0.05). On the diagonal are metrics for which parameters are designed to
match (gray background). Best agreement per AB metric is underlined.

Interleaving Credit
AB Metric TDI TDI@1 TDIS TDIS@1 TDIT TDIT@1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53
AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55
ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55
ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50
ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58
ABT@1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.61
ABT,S 0.47 0.55 0.53 0.71 0.66 0.66 0.58 0.53
ABT,S@1 0.42 0.50 0.53 0.66 0.61 0.66 0.58 0.58
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Figure 2: Power for TDI with matching credit functions (assum-
ing two-sided t-test with p = 0.05, as described in Section 4.2).
The black line denotes ABS , the AB metric with most power.
As we study 8 AB metrics, this gives rise to 8 possible variants of
TDI with matching credit functions.

Table 4 shows the agreement between each AB metric and each
variant of TDI. In the first column, we see the agreement between
baseline TDI and each AB metric, computing each as previously
defined. The lowest agreement is observed between the original
TDI and the AB metric ABT,S@1, at 42%. The highest agreement
is observed between TDIS and the AB metric it is designed to opti-
mize (ABS), with 87%. Given the small sample of 38 comparisons,
only the agreement rates above 68% are statistically significantly
different from random agreement, and are shown in bold in the table.
These compare favorably with typical inter-judge agreement rates
in offline evaluations of around 65% [32], and with the bounds on
AB self-agreement ABSub, ABUp in Table 2.

We note that using different credit functions often increases agree-
ment between AB metrics and TDI, but interestingly the maximal
agreement is often not seen when the AB metric matches the credit
function used for interleaving. This can be observed by comparing
the metrics that match in terms of their parameters (indicated by the
gray cells in Table 4), to the ones that achieved highest agreement
(underlined). For example, agreement with ABS is maximized by
TDIS , but agreement with ABT,S is maximized by TDIS@1. A
reason for this is the interplay between bias and noise. By more
aggressively removing noise in the interleaving comparison (in this
case, by only considering SAT clicks at the top position), we may
increase agreement with related AB metrics, even those for which
there is bias due to a slight mismatch between the interleaving and
AB metric.

Our results show that agreement between interleaving and AB
comparisons can be substantially improved by matching interleav-
ing credit parameters to those of the target AB metrics. We also

need to ensure that in doing so, we do not decrease the sensitivity of
interleaving. Intuitively, removing observations (e.g., clicks beyond
the first position) may reduce sensitivity. On the other hand, if the
removed observations are noisy, the interleaving signal may actu-
ally become more discriminative, and sensitivity can be increased.
Figure 2 shows the power for TDI with replaced scoring functions.
We see that TDI with matching credit functions typically has lower
power than standard TDI. In particular, sensitivity decreases for
time-based metrics, which may also explain the relatively lower
agreement between time-based interleaving credit functions and AB
metrics. However, the power of these variants of TDI is still 1 to 2
orders of magnitude larger than the power of the AB metric with
most power. Sensitivity is increased by TDIS , the credit function
that also shows highest agreement. This result indicates that fo-
cusing interleaving credit on low-noise clicks is a very promising
way to achieve both high sensitivity and good agreement with user
satisfaction metrics.

The results of the analysis in this section motivate the next set of
questions. Given a target AB metric, what is the best credit function
that should be applied to TDI? Just as the correct credit function
may not be the same as the target AB metric, the parameters of the
credit function may need to be tuned. And, once we automatically
optimize the parameters of interleaving credit functions, to what
degree do optimal values generalize to unseen ranker comparisons?
We address these questions next.

6.2 Parameterized Credit Functions
One way to increase agreement of TDI with AB metrics is to take

an interleaving credit function with parameters (see Section 5.3)
and tune the parameters towards a given AB metric. For instance,
previous work has shown that it is possible to estimate the probability
that a given click indicates user satisfaction [16]. While an AB
metric such as ABS must incorporate a threshold below which
clicks are not considered to indicate user satisfaction, the threshold
for TDI need not be the same. Rather, we can find the optimal
threshold ts for TDItsS at which to consider a click as satisfied.
This optimization procedure might lead to reduced variance, and
thereby increase agreement with AB metrics.

We use the maximization procedure described in Section 5.5 and
in particular Equation (10) to find an optimal threshold for each AB
metric we consider. Note that, as opposed to experiments in the
previous section, here we obtain averages over N = 100 iterations
of the maximization procedure, instead of averages over the 38
comparisons. This allows us to perform statistical significance
testing using a one-sample two-sided student’s t-test. In our result
table we indicate statistically significant improvements over TDI
by N (p < 0.01) (losses H). Also, as opposed to before, we now
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TDI TDI@1 TDIS TDIS@1 TDIT TDIT@1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53
AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55
ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55
ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50
ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58
ABT@1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.62
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Methods

1. Matching AB Metrics 
2. Parameterized Credit Functions 
3. Combined Credit Functions
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Methods - Combined Credit 

✤ Combine parameterized credit functions 
❖ wS .  TDISts   +   wT .  TDIT,Sts  

 

✤ Find optimal weights 
❖ Maximizing agreement

✤ Using the same maximization procedure 
❖ Bootstrap sample, parameter sweep

Click weight Time weight
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All significantly better than TDI
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Outline
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Data + analysis 
Methods + results 
Conclusions 
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Conclusions - Data Analysis

✤ Sensitivity: 
❖ AB Testing is 10-100x less sensitive than 

Interleaving 

✤ Agreement 
❖ Between AB Testing and Interleaving (TDI) 

is low: <76%

Confirming earlier findings

New insight
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Conclusions - Methods

✤ Interleaving (TDI) with just credit matching AB metrics 
❖ Unpredictable performance 

✤ Interleaving (TDI) with parameterized credit functions 
❖ Improvements for some AB metrics  

✤ Interleaving (TDI) with combined credit functions 
❖ Improvements for all AB metrics
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Conclusions - Future Work

✤ Consider even richer user signals (sessions, 
task level features)

✤ Take magnitude and uncertainty of AB metric 
differences into account

✤ Understanding of where and why agreement is 
low or high

✤ Apply to other types of ranking systems
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