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Search Engines that Learn

✤ Search engines are complex machines that 
base their ranking hundreds of signals 

✤ Learn to combine these signals 

❖ Offline: using labeled, static datasets 

❖ Online: directly from users



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

F
A
E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

F
A
E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Exploring weight 
space

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

F
A
E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Preferences through 
interleaved comparisons

Weights for features

Exploring weight 
space

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

F
A
E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A
B
C
D
E

F
A
E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B
C
D
E

F

E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B
C
D
E

F

E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B
C
D
E

F

E
B
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B

C
D

F

E

C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B

C
D

F

E

C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B

C
D

F

E

C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B
F

E
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B
F

E
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

A

B
F

E
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

1
2

BM25

PageRank

#Clicks

A

B
F

E
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

1
2

BM25

PageRank

#Clicks

A

B
F

E
C

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

3

Dueling Bandit Gradient Descent (DBGD)

BM25

PageRank

[Yue et al., 2009; Hofmann et al., 2011; 
Radlinski et al., 2008]

Weights for features

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

4

Dueling Bandit Gradient Descent (DBGD)

✤ DBGD updates after exploring only a single direction  

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

4

Dueling Bandit Gradient Descent (DBGD)

✤ DBGD updates after exploring only a single direction  

✤ Exploring multiple directions would lead to a better 
ranker with less updates 

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

4

Dueling Bandit Gradient Descent (DBGD)

✤ DBGD updates after exploring only a single direction  

✤ Exploring multiple directions would lead to a better 
ranker with less updates 

✤ But would be expensive when interleaving was used

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

4

Dueling Bandit Gradient Descent (DBGD)

✤ DBGD updates after exploring only a single direction  

✤ Exploring multiple directions would lead to a better 
ranker with less updates 

✤ But would be expensive when interleaving was used
❖ Requires pairwise comparisons between all pairs 

of directions 

Existing work



Multileave Gradient Descent  
for Fast Online Learning to Rank

4

Dueling Bandit Gradient Descent (DBGD)

✤ DBGD updates after exploring only a single direction  

✤ Exploring multiple directions would lead to a better 
ranker with less updates 

✤ But would be expensive when interleaving was used
❖ Requires pairwise comparisons between all pairs 

of directions 

✤ Multileaved comparisons can avoid this

Existing work
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Experiments

✤ Queries 
❖ Sampled from a L2R dataset 

✤ Clicks 
❖ Generated by a cascade click model 

✤ NDCG 
❖ Measured on held out data
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✤ We introduce MGD, an extension of DBGD 

❖ Multileaving instead of Interleaving 
❖ Two update methods MGD-M and MGD-W 

✤ Experimental validation 
❖ Large improvements over baseline 
❖ Especially with noise in feedback 

✤ Implications 
❖ Orders of magnitude less interaction data 

required with MGD 
❖ Search engines can adapt much faster



Multileave Gradient Descent  
for Fast Online Learning to Rank

11

Thank you

Multileave Gradient Descent
for Fast Online Learning to Rank

Dueling Bandit Gradient Descent (DBGD)
[1]   T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.
[2]   Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a 
       dueling bandits problem. In ICML, 2009.

Experimental Results

Multileave Gradient Descent (MGD) [3]   A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved
       comparisons for fast online evaluation. In CIKM, 2014.

Exploitative
Ranker

Exploratory
Ranker

Using multileaved 
comparisons

This research was partially supported by Amsterdam Data Science, the Dutch national program COMMIT, Elsevier, the European Community’s Seventh 
Framework Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol), the ESF Research Network Program ELIAS, the HPC Fund, the Royal 
Dutch Academy of Sciences (KNAW) under the Elite Network Shifts project, the Microsoft Research Ph.D. program, the Netherlands eScience Center under 
project number 027.012.105, the Netherlands Institute for Sound and Vision, the Netherlands Organisation for Scientific Research (NWO) under project nrs 
727.011.005, 612.001.116, HOR-11-10, 640.006.013, 612.066.930, CI-14-25, SH-322-15, the Yahoo! Faculty Research and Engagement Program, and Yandex.

WSDM 2016, San Francisco, US

PageRank

BM25

PageRank

BM25

Exploitative
Ranker

Exploratory
Ranker

PageRank

BM25

Exploratory
Ranker

Exploratory
Ranker

Using interleaved 
comparisons

Exploratory ranker 
wins

Two exploratory 
rankers win

Single random 
exploration

Multiple random 
explorations

PageRank

BM25

Update towards 
winner

Apply an update 
method

Winner Takes All (MGD-W) Mean Winner (MGD-M)

PageRank

BM25 Randomly select 
winner

PageRank

BM25 Compute mean of 
winners

Figure 2: Online performance (discounted cumulative NDCG)
on MGD-W and MGD-M with varying number of candidates
compared to DBGD on NP2003 dataset for perfect, navigational

and informational click model instantiations.
stronger when there is more noise in the feedback. Generally, MGD-
M has lower standard deviation than MGD-W indicating that it is
more stable.

Note that the informational click model has a high probability
to produce multiple clicks because its stop probabilities are low
(see Table 1). This typically leads to multiple winners of a TDM
comparison, which in turn allows MGD-M to be different from
MGD-W. Thus, a potential reason for MGD-M to outperform MGD-
W is that the mean of several unit vectors is shorter than a unit vector.
As a result, MGD-M updates the current best weight vector with
smaller steps. In other words, for DBGD and MGD-W we have that
|w0

t � w

0
t+1| = ↵ · �, while for MGD-M |w0

t � w

0
t+1|  ↵ · �.

We tested this hypothesis by normalizing the mean vector to a
unit vector before updating using MGD-M, so Algorithm 4 was
effectively changed such that |w0

t � w

0
t+1| = ↵ · �. The result is

depicted in Table 4, where we see how MGD-M with normalized
update directions indeed performs slightly worse than MGD-M
without normalization for the informational click model in terms of
offline performance, confirming that some of its advantage indeed
comes from the smaller update step. Nonetheless, MGD-M with
normalization still either performs on par with or better than MGD-
W, so not all of its performance advantage can be attributed to
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Figure 3: Offline performance (NDCG) on MGD-W and MGD-
M with 9 candidates compared to DBGD on NP2003 dataset an
informational click model.

Table 4: Performance of MGD-M, MGD-W and normalized
MGD-M each with 9 candidates for the three instantiations of
the CCM (see Table 1). Run on the NP2003 dataset; perfor-
mance evaluated after 1,000 impressions.

perfect navigational informational

of
fli

ne MGD-W 0.713 (0.05) 0.708 (0.05) 0.656 (0.07)

MGD-M 0.714 (0.05) 0.710 (0.05) 0.681 (0.06)

Norm MGD-M 0.711 (0.04) 0.710 (0.04) 0.667 (0.06)

on
lin

e MGD-W 105.785 (5.88) 101.708 (5.19) 77.568 (10.24)

MGD-M 105.087 (4.71) 102.953 (5.62) 81.037 (8.74)

Norm MGD-M 105.844 (5.21) 102.686 (5.32) 81.676 (9.46)

smaller updates. This implies that the direction of the update taken
by MGD-M is better than that of MGD-W.

To answer RQ3, while in general both MGD methods outperform
DBGD, MGD-M is better at handling high noise levels, making it
more effective than MGD-W overall. The advantage of MGD-M
over MGD-W comes from both the update direction and a smaller
update size.

6.4 Number of candidates and learning rate
In this section, we investigate some remaining questions.

6.4.1 Number of candidates
In Section 6.1 we have already discussed the interplay between

the amount of noise in the feedback and the optimal number of can-
didates in MGD. Figure 4 shows the effect of increasing the number
of candidates even further to a maximum of 1,000 candidates. Note
that as soon as the number of candidate rankers goes beyond the
length of the result shown to users, the only effect of increasing
it even further is that the probability of including the current best
ranker decreases.4 We see in Figure 4, Table 2 and Table 3 that both
offline and online performance generally go up when the number of
candidates goes up. However, beyond approximately 10 candidates
this either stabilizes or fluctuates slightly, depending on the amount
of noise in the click model. This matches  = 10, the result list
length in our experiments. We increase the noise further than we
did until now by including results for an almost random click model
instantiation. Still in Figure 4 (the green curves near the bottom
in both plots), we see that the more noise we add, the more MGD
benefits from adding candidates.

4This is an artifact that stems from the way we generate candidates
and the fact that we use TDM as our multileaving method.

Noisy Feedback Long Run Learning Rate

user that clicks on all highly relevant and only on relevant docu-
ments. Then, a navigational instantiation encoding a navigational
task where a user is mostly looking for a single highly relevant doc-
ument. And lastly, an informational instantiation that models a user
who would typically click on several documents, less dependent on
their relevance. These three models have increasing levels of noise,
as less and less is determined by the relevance labels of documents.
Then, we use the almost random instantiation only for some of our
experiments to test what happens when feedback becomes extremely
noisy. Note that the datasets that only have binary relevance use
instantiations for the lowest and highest relevance labels (0 and 2)
in Table 1.

5.3 Experimental runs
To evaluate the effect of the number of candidates n that are

being contrasted in a multileave experiment, both flavors of mul-
tileave gradient descent, MGD-W and MGD-M, are run with n 2
{1, 2, 6, 9, 20}. We included n = 9 to capture the case were all
documents in the top top  = 10 come from different rankers. We
write MGD-W-n (MGD-M-n) to indicate settings in which we run
MGD-W (MGD-M) with n candidates.

In our experiments we contrast the performance of MGD-W and
MGD-M with each other as well as with the DBGD baseline. A
run with n = 1 is included to verify wether this setting has no
significant difference with the baseline. The bulk of our experiments
consist of 1,000 iterations (i.e., simulated user impressions) each
and is run 25 times on each fold resulting in 125 runs over each
dataset. One experiment is run with 100,000 query impressions and
the same number of repetitions. In total, our results are based on
over 86M simulated query impressions.

The parameters of the MGD algorithm are set according to the
current standard for DBGD [31]. Accordingly, the candidates were
generated with � = 1, updates for DBGD were performed with
↵ = 0.01, and zeros used for initialization of w0

0. For MGD we
increased the learning rate to ↵ = 0.03 by tuning it on NP2003, see
Section 6.4.2.

5.4 Evaluation
To assess performance, NDCG [12] is computed on held-out data.

We use the top  = 10 for simulating clicks and computing the
NDCG:

NDCG =
X

i=1

2rel(r[i])�1

log2(i+ 1)
iNDCG�1

.

This metric calculates the gain over relevance labels rel(r[i]) for
each document, which is then normalized by the maximal NDCG
possible, the ideal NDCG (iNDCG). Offline performance is deter-
mined by computing the average NDCG score of the current best
ranker over a held-out set. Furthermore, since the user experience
with MGD may be inferior to the existing DBGD algorithm, online
performance is also assessed, by computing the cumulative NDCG
over the results shown to the user. For online performance, a dis-
count factor of � = 0.995 is used [8, 28]. This factor ensures that
impressions beyond a horizon of 1,000 impressions have an im-
pact of less than 1%. To verify whether differences are statistically
significantly different, a two tailed Student’s t-test is used.

6. RESULTS AND ANALYSIS
In this section we present the results of our experiments and

answer the research questions posed in Section 1. Furthermore, in
Section 6.4, we investigate the effect of n, the number of candidates,
and ↵, the learning rate.
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Figure 1: Offline performance (NDCG) on MGD-W and MGD-
M with varying number of candidates compared to DBGD on
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click model.

6.1 Learning speed
We start by answering RQ1: whether MGD learns faster than

DBGD. The plots in Figure 1 show how offline performance, mea-
sured as NDCG on a held-out fold, increases as the learning methods
observe more queries. These plots are based only on queries from
NP2003 and are illustrative of performance on all other datasets.
We see that when n, the number of candidates that are being mul-
tileaved, increases, offline performance of both MGD-M-n and
MGD-W-n improves monotonically. Furthermore, systems with
more candidates learn much faster. In the case of perfect feedback,
there is less of an effect as there is less to gain over an already well
performing baseline. But when the noise in user feedback increases,
the advantage of MGD over DBGD becomes stronger. Interestingly,
for n = 20, the MGD methods obtain an NDCG value on infor-
mational feedback that is close to the converged performance on
perfect feedback. In other words, the inclusion of more candidates
counters the noise introduced by the click model. In Table 2 we
see the same effect for all datasets: generally, under perfect feed-
back converged performance does not change much; however, if
the feedback is noisier, then the more candidates are added, the
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6.1 Learning speed
We start by answering RQ1: whether MGD learns faster than

DBGD. The plots in Figure 1 show how offline performance, mea-
sured as NDCG on a held-out fold, increases as the learning methods
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MGD-W-n improves monotonically. Furthermore, systems with
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there is less of an effect as there is less to gain over an already well
performing baseline. But when the noise in user feedback increases,
the advantage of MGD over DBGD becomes stronger. Interestingly,
for n = 20, the MGD methods obtain an NDCG value on infor-
mational feedback that is close to the converged performance on
perfect feedback. In other words, the inclusion of more candidates
counters the noise introduced by the click model. In Table 2 we
see the same effect for all datasets: generally, under perfect feed-
back converged performance does not change much; however, if
the feedback is noisier, then the more candidates are added, the

Figure 4: Sweep over the number of candidates in terms of of-
fline and online performance for MGD-M and MGD-W after
1,000 impressions. Performed on NP2003 using all four instan-
tiations of the click model. DBGD is displayed by the black dots
on the left axis. Note the log scale on the horizontal axis.

In conclusion, both offline and online performance increase with
the number of candidates when noise is present, but this effect
appears to be limited by the length of the result list shown to users.

6.4.2 Learning rate
Our MGD algorithms are sufficiently different from DBGD to

warrant a new investigation of the learning rate ↵. The results in
Section 6.3 suggest that some of MGD-M’s superior performance
over MGD-W could be explained by the smaller steps this algorithm
takes. To further investigate this effect, we vary the learning rate.

Figure 5, which shows a sweep over learning rates, again shows
a considerable difference between MGD-M and MGD-W. Further-
more, for most algorithms online performance increases when ↵

goes up while offline performance drops slowly. With a learning rate
close to zero, MGD performs notably worse than DBGD because
multileaving interferes more with the ranking presented to the user,
while the low learning rates prevents it from adapting quickly. Con-
versely, when the learning rate increases, MGD greatly outperforms
DBGD in terms of online performance for all three click models.
This illustrates the tradeoff MGD makes: multileaving distorts the
ranking shown to the user, but when the learning rate increases it
compensates by adapting to the user faster. So, interestingly, also
when there is no noise in the feedback, MGD can greatly outperform
DBGD if the learning rate is chosen appropriately. Note that, for
all our other experiments, we chose a fixed value of ↵ = 0.03 for
MGD based on these plots. This point denotes a reasonable tradeoff
between offline and online performance. This is a different optimum
than DBGD and, since DBGD is equal to MGD with a single candi-
date, it seems the optimal learning rate depends on the number of
candidates. Ideally, one would find a learning rate that is optimal for
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Figure 5: Sweep over learning rate values in terms of offline
and online performance after 1,000 impressions for MGD-M
and MGD-W with 9 candidates and DBGD. Performed on
NP2003 using three different click models with varying degrees
of noise.
each number of candidates. Doing so would only increase MGD’s
performance advantage.

In sum, this experiment shows that DBGD and MGD have dif-
ferent optimal learning rates and that MGD can greatly outperform
DBGD, both offline and online, when the learning rate is chosen
appropriately.

7. CONCLUSION
We proposed an extension of dueling bandit gradient descent

(DBGD), an online learning to rank method. DBGD is limited to ex-
ploring only a single candidate ranker at a time. Where DBGD uses
interleaved comparisons to infer pairwise preferences, our newly
introduced method—multileave gradient descent (MGD)—learns
from comparisons between a set of rankers to infer n-way prefer-
ences between n candidate ranker improvements. We proposed two
specific ways of using these preferences for updating a current best
ranker. The first variant, MGD-W, picks a ranker to update towards
at random from among the rankers that win a comparison; the sec-
ond variant, MGD-M, updates towards the mean of all winners of
the comparison.

Our empirical results, based on extensive experiments on nine
learning to rank datasets encompassing 86M user interactions, show
that either variant dramatically improves over the DBGD baseline.
In particular, when the noise in user feedback increases, we find
that both MGD-W and MGD-M are capable of learning better
rankers much faster than the baseline does. When the number
of candidate rankers we consider increases from 1 (as in the base-
line), offline performance—measured on held-out data—and online
performance—measured on the results shown to users—consistently
go up until it converges at around 10 candidate rankers. After 1,000
query impressions with noisy feedback, MGD performs almost on
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on the left axis. Note the log scale on the horizontal axis.
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Section 6.3 suggest that some of MGD-M’s superior performance
over MGD-W could be explained by the smaller steps this algorithm
takes. To further investigate this effect, we vary the learning rate.
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a considerable difference between MGD-M and MGD-W. Further-
more, for most algorithms online performance increases when ↵
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close to zero, MGD performs notably worse than DBGD because
multileaving interferes more with the ranking presented to the user,
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versely, when the learning rate increases, MGD greatly outperforms
DBGD in terms of online performance for all three click models.
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Our empirical results, based on extensive experiments on nine
learning to rank datasets encompassing 86M user interactions, show
that either variant dramatically improves over the DBGD baseline.
In particular, when the noise in user feedback increases, we find
that both MGD-W and MGD-M are capable of learning better
rankers much faster than the baseline does. When the number
of candidate rankers we consider increases from 1 (as in the base-
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Conclusions

- Experiments show dramatic improvements over the baseline
- In particular with noisy feedback, MGD learns much faster 
  than DBGD

- MGD-M performs equal or outperforms MGD-W
- Orders of magnitude less interaction data is required
- Far fewer user are exposed to inferior rankers


