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Motivation

• Search engines constantly evolve 

• Engineers and researchers develop new rankers, 
potential improvements 

• Goal: improving over production ranker 

• Tool: comparisons between experimental rankers
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• SERP length 

• limits the number of rankers that can be 
compared 

• never more rankers then slots in the SERP 

• Solution: Optimized Interleave

Potential Problems with TDM
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Research Questions
1. Can multileaved comparison methods identify 

preferences between rankers faster than 
interleaved comparison methods?

2. Does OM scale better with the number of 
rankers than TDM?

3. How does the sensitivity of multileaving methods 
compare to that of interleaving methods?



Experimental Setup

- LETOR Data (queries, documents represented by features, relevance 
judgments) 

- A ranker is a single feature (BM25, Pagerank, …) 

- Simulate clicks using cascade click model 

- Measure error

In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:

E

bin

=

P
i,j2R^i 6=j

sgn(P̂
i,j

� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R

m

x

x

}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.
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In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:

E

bin

=

P
i,j2R^i 6=j

sgn(P̂
i,j

� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R

m

x

x

}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?
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In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:

E

bin

=

P
i,j2R^i 6=j

sgn(P̂
i,j

� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R

m

x

x

}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?



15

Faster?
• 5 rankers

• 5k queries

• Updates:

In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:

E

bin

=

P
i,j2R^i 6=j

sgn(P̂
i,j

� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R

m

x

x

}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?
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In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:

E

bin

=

P
i,j2R^i 6=j

sgn(P̂
i,j

� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk
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=
[

R

m

x

x

}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?
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Faster?
• 5 rankers

• 5k queries

• Updates:

• Interleaving (TD, OI): 

• 10 queries for the whole matrix

In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:
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bin
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i,j2R^i 6=j

sgn(P̂
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� 0.5) 6= sgn(P
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� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R

m
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}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?



15

Faster?
• 5 rankers

• 5k queries

• Updates:

• Interleaving (TD, OI): 

• 10 queries for the whole matrix

• Multileaving (TDM, OM): 

In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:
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bin

=

P
i,j2R^i 6=j

sgn(P̂
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� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R
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}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?
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Faster?
• 5 rankers

• 5k queries

• Updates:

• Interleaving (TD, OI): 

• 10 queries for the whole matrix

• Multileaving (TDM, OM): 

• 1 queries for the whole matrix

In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:
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bin

=
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sgn(P̂
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� 0.5) 6= sgn(P
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� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
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: 8k, 8R
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2 R, 9m
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such that Lk
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=
[
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Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?
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Faster?
• 5 rankers

• 5k queries

• Updates:

• Interleaving (TD, OI): 

• 10 queries for the whole matrix

• Multileaving (TDM, OM): 

• 1 queries for the whole matrix

• 10 times faster?

In this paper, we focus on developing multileaved comparisons
methods for the latter task because we believe it represents an impor-
tant scenario that has been commonly addressed in offline evaluation.
In Section 6.5, we also evaluate our methods, designed to compare
all rankers to each other, on the task variation in which they asked
to compare a single ranker to a production ranker. In Section 7, we
discuss how our methods could be customized to this task variation
or to the K-armed dueling bandit problem.

To formalize the task of determining how all rankers in R com-
pare to each other, we begin by defining ground truth as a preference
matrix P , an R ⇥ R matrix in which each cell P

ij

contains the
difference in expected nDCG [13] between rankers R

i

and R

j

,
normalized to lie between 0 and 1:

P

ij

= 0.5(nDCG(R
i

)� nDCG(R
j

)) + 0.5,

where nDCG(R
i

) is the expected nDCG of ranker R

i

across
queries. The goal of an online evaluation method is then to use
click feedback to learn a matrix P̂ that approximates P .

The performance of an interleaving or multileaving method on
this task can be measured using the error of P̂ with respect to P .
We propose a binary error metric that counts the number of times P̂
is incorrect about which of the rankers has a higher expected nDCG:

E

bin

=

P
i,j2R^i 6=j

sgn(P̂
i,j

� 0.5) 6= sgn(P
i,j

� 0.5)

|R| · (|R|� 1)
,

where sgn(·) returns �1 for negative values, 1 for positive values
and 0 otherwise, and the infix operator 6= returns 1 whenever the
signs are not equal.

4. METHOD
With most interleaving methods, learning P̂ requires interleaving

each ranker pair (R
i

, R

j

) separately to estimate each P

ij

, which
means many interleavings are required for learning. The goal of
multileaved comparison methods is to reduce the cost of learning by
constructing multileavings that, by combining documents from all
rankers R, can learn about all cells in P at once.

In principle, one could also learn about multiple cells at once
using probabilistic interleave (PI) [10] in conjunction with impor-
tance sampling. However, as discussed in Section 2, this could hurt
user performance as PI might present the user with inferior rankings.
Hence, we focus on multileave comparison methods that, like team
draft and optimized interleave, only show the user rankings that are
“in-between” the rankers being combined.

We propose two variants of multileaved comparison: team draft
multileave (TDM), explained in Section 4.1 and optimized multi-
leave (OM), explained in Section 4.2. OM is designed to avoid a
potential limitation of TDM on the number of rankers that it can
compare with one query.

4.1 Team Draft Multileave
The first variant of multileaved comparisons is based on team

draft (TD) [21]. This interleaving method follows the analogy of
selecting players (documents) for a team (ranking) for a friendly
sports match. The construction of an interleaved list takes several
rounds, until the interleaving is long enough. In each round, rankers
select their most preferred document that is still available. It is
added to their team and appended to the interleaving. The order
in which rankers get to pick a document in a round is randomized.
After a user interacts with documents in the interleaving, the team
that owns a clicked document gets credit and the team with the most
credit wins the comparison.

Algorithm 1 Team Draft Multileave
Require: set of rankings R, multileaving length k.
1: L [ ] //initialize new multileaving
2: 8R

x

2 R : T
x

 ; //initialize teams for each ranking
3: while |L| < k do
4: select R

x

randomly s.t. |T
x

| is among the smallest teams
5: p 0
6: while R

x

[p] 2 L and p < k � 1 do
7: p p+ 1
8: if R

x

[p] /2 L then
9: L L+ [R

x

[p]] //append document to multileaving
10: T

x

 T

x

[ {R
x

[p]} //add document to team
11: return L, T

We propose team draft multileave (TDM), an extension that can
compare more than two rankers at a time. Doing so is straight-
forward, as it only requires changing the number of teams that
participate. TDM is described in Algorithm 1, which returns not
only the multileaving, but also the teams to which the documents
in the multileaving belong. These team assignments are used after
a user interacts with the interleaving to decide on an ordering over
the input rankers. The rankers are ordered according to how many
clicks were made on documents belonging to their team. We use
this ordering over rankers to update all P̂

ij

, for which we maintain
an empirical mean.

4.2 Optimized Multileave
While TDM is a natural way of dealing with more than two

rankers, it requires multileavings to be long enough to represent
teams for each ranker. Therefore, we propose optimized multileave
(OM), based on optimized interleave (OI) [20], which does not have
this drawback and thus may scale better with the number of rankers.

We start in Section 4.2.1 by constructing combinations of docu-
ments from the different rankings that satisfy a generalization of the
prefix constraint of [20]; this results in a set of allowed multileavings.
Then we assign a probability to each of these multileavings that de-
termines how often it is shown to users. This probability distribution
over multileavings is computed by solving for the simplex and unbi-
asedness constraints in Section 4.2.2. Subsequently, the probability
distribution over multileavings that maximizes sensitivity is selected
in Section 4.2.3. When a multileaving is shown to a user, credit is
assigned, according to credit functions in Section 4.2.4, to each of
the original rankings based on which documents the user clicks. We
explain each step in more detail in the following sections.

4.2.1 Allowed Multileavings
The prefix constraint proposed in [20] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of pre-
fixes of the two original rankings. We extend this to the case with
more than two original rankings by defining the set of allowed
multileavings L as follows:

L = {L
i

: 8k, 8R
x

2 R, 9m
x

such that Lk

i

=
[

R

m

x

x

}. (1)

Here, R is the set of original input rankings R

x

that we want to
compare, Lk

i

is the top k documents of multileaving L

i

, and R

m

x

x

is the top m

x

documents in ranking R

x

. Note that when there are
only two rankings (A and B in the definition in [20]) in R, then (1)
coincides with the prefix constraint in [20].

Our constraint in (1) allows for at most |R||Li

| multileavings.
Even with a relatively small |R| and |L

i

|, this is more than can be
handled by the optimization step described in the following sections.

R1 R2 R3 R4
4

R5
R1 0 +1 -1 +1 +1
R2 -1 0 +1 -1 +1
R3 +1 -1 0 +1 +1
R4 -1 +1 -1 0 +1
R5 -1 -1 -1 -1 0

Can multileaved comparison methods identify preferences 
between rankers faster than interleaved comparison methods?
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Scaling
Table 3: E

bin

when the number of rankers |R| is varied. Result
list length k = 10, averaged over 10 repetitions and 5 folds of
the NP2003 data set.

Method |R| = 3 |R| = 5 |R| = 7 |R| = 10

OM ⌘ = 10 0.144 (0.16) 0.154 (0.12) 0.111 (0.06) 0.116 (0.04)

TDM 0.191 (0.18) 0.192 (0.09) 0.190 (0.06) 0.203 (0.05)

OI 0.189 (0.18) 0.200 (0.08) 0.255 (0.06) 0.316 (0.04)

TD 0.143 (0.13) 0.214 (0.09) 0.246 (0.05) 0.284 (0.04)

between multiple rankers with far less data (i.e., queries and clicks)
than interleaved comparison methods.

Under perfect feedback, TDM and OM learn ranker preferences
equally fast. When noise increases, OM initially learns these prefer-
ences faster than TDM does. However, under noisy feedback, TDM
keeps improving the learned preferences long after OM plateaued.

Table 2 shows the error E
bin

at 500 queries. We choose a rather
low number of queries to emphasize learning speed. Note that the
rightmost column is equal to the E

bin

values in a slice of Figure 1
after 500 queries. For the multileaving methods, each P̂

ij

has had
500 updates by then. The interleaving methods only performed 50
updates of P̂

ij

for each pair of rankers. The results show that, in
general, the multileaving methods have significantly less error than
the interleaving methods. In particular, OM has less error than OI
does in 24 out 27 experiments. The exception to this rule are the
three experiments on MQ2007.

TDM has less error than TD in 22 out of 27 experiments. In two
experiments, TDM has a significantly higher error; those experi-
ments are on perfect and navigational instantiations of DCM on the
TD2003 data set.

For OM we see in both Table 2 and Figure 1 that ⌘, the sample
size, does not seem have a large effect on the error. Therefore, with a
surprisingly small number of samples, effective and computationally
efficient multileaving is possible. Consequently, in most of the
analyses that follow, we report only on OM with ⌘ = 10.

6.2 Scaling the Number of Rankers
The motivation for performing multileaved comparisons lies in

the fact that it is possible to compare multiple rankers at once. Most
of our experiments in this paper use a set of 5 rankers but, in response
to RQ2, in this section we analyze what happens when the number
of rankers being compared increases.

Table 3 lists how each method performs when the number of
rankers to be compared varies. We kept the result list length fixed at
k = 10. Both interleaving methods OI and TD are impacted greatly
when the number of rankers increases. This is largely due to the
fact that many more comparisons are needed and as such each P̂

ij

receives fewer updates. By contrast, OM and TDM do not show
significant degradation when the number of rankers increases.

We suspect that there may be an interaction between the number
of rankers that are compared and the length of the result list that is
shown to the user. Depending on the method, the result list length
may limit the number of rankers that can be represented at once.
We experimented with several settings where we varied the number
of rankers that were to be compared and the result list length. We
considered all combinations of |R| = 3, 5, 7, 10 rankers and lengths
k = 3, 5, 7, 10. Because of computational limitations, we had to
limit ourselves to a single data set, a single user model, with fewer
repetitions and fewer queries. We selected the NP2003 dataset with
the informational instantiation of DCM with 10 repetitions and 2.5K
queries.

In Figure 2, we plot the error E
bin

against the number of rankers
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Figure 2: Scaling of the methods. Average E

bin

against the
number of rankers x per result list length k. Computed on all
combinations of |R| = 3, 5, 7, 10 and k = 3, 5, 7, 10. Averaged
over 10 repetitions and 5 folds of the NP2003 data set. Standard
deviation is indicated with error bars and lines are fitted using
least squares.

per documents in the result list. The four rightmost data points, for
instance, were produced using 10 rankers and result lists of length 3
only. The leftmost points are from the opposite scenario: 3 rankers
were compared with document lists of length 10. Note that there are
many ways in which |R|

k

can be equal to 1, and that therefore there
is a relatively wide spread of error.

We fitted lines for each evaluation method using least squares.
Though these lines are not perfect fits, they nevertheless give a useful
indication of the behavior of the methods when the ratio between the
number of rankers and the number of documents increases. Figure 2
shows that both multileaving methods can cope much better with
an increase in this ratio than the interleaving baselines. In fact, the
performance of OM is not impacted at all by an increase of this ratio.
The two interleaving methods, on the other hand, almost double
their error when the ratio increases from 3

10 to 10
3 .

While Table 3 shows that TDM is not impacted by the number of
rankers, in Figure 2, we see that the error for TDM does increase
when the ratio of rankers per result list length goes up. We attribute
this to the fact that team draft methods always assign a document in
an interleaving to a single input ranker. When there are (many) more
rankers than documents to which they can be assigned, then most
rankers cannot be distinguished from one another. Consequently,
not all P̂

ij

can be updated per comparison.

6.3 Bias
In this section, we investigate RQ3. We evaluate fidelity require-

ment (2) from [12] which states that, under random clicks, rankers
should tie in expectation. TD was designed to fulfill this requirement.
We run a set of experiments with the random instantiation of the
DCM (see Section 5.3). When a user clicks on a result list without
any preference for relevant documents, an online evaluation method
that interprets these clicks should not detect any preferences among
rankers. We measure how many preferences each of the evaluated
method detects when exposed to a random user by comparing the
P̂

ij

of the method to a ground truth that consists of P
ij

= 0.5 for
all i, j using E

bin

.
The result of this analysis is shown in Figure 3. We see that for

all methods, the error quickly drops to rather low values. Both TD
and TDM steadily converge to values near 0. Within a few hundred
queries, their error is below 5%. In the long run, neither method
detects differences among rankers when it should not.

OI takes much longer to drop below 5% and plateaus higher than
both team draft methods. For OM, it turns out that the number
of multileavings that is sampled, ⌘ (see Section 4.2.1) has a big

Does OM scale better with the number of rankers than TDM? 
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Figure 3: The effect of differences between rankings, the num-
ber of moved documents and the amplitude of the move is con-
trolled. E

bin

at 500 queries, 100 issues, averaged over 125 repe-
titions. We used the informational click model.

of the behavior of the methods when the ratio between the number
of rankers and the number of documents increases. Fig. 2 shows that
the multileaving methods can cope better with an increase in this
ratio than the interleaving baselines. The performance of OM is not
impacted by an increase of this ratio; the two interleaving methods
almost double their error when the ratio increases from 3

10 to 10
3 .

While Table 3 shows that TDM is not impacted by the number of
rankers, in Fig. 2, we see that the error for TDM does increase when
the ratio of rankers per result list length goes up. We attribute this
to the fact that team draft methods always assign a document in an
interleaving to a single input ranker. When there are (many) more
rankers than documents to which they can be assigned, then most
rankers cannot be distinguished from one another. Consequently,
not all P̂

ij

can be updated per comparison.

6.3 Sensitivity
In this section, we investigate RQ3. We study the impact of

the difference between evaluated rankers on interleaving and mul-
tileaved comparison methods using synthetic data as discussed in
Section 5.2. We consider cases when the position of one or more
document(s) changes from one ranking to another (we also inves-
tigated cases when one or more document(s) are replaced by new
ones and obtained similar results). In doing so, we control two
things: the number of documents moved as well as the amplitude of
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Figure 4: Incorrectly identified preferences under a random
click model, with |R| = 5 rankers and result list of length
k = 10. Measured as E

bin

versus a ground truth with no pref-
erences, P

ij

= 0.5 for all i, j. Averaged over 25 repetitions, 9
dataset with each 5 folds.
the move, i.e., how far away is the moved document located from
its original position. While we only control the difference w.r.t. a
single ranking and not between all pairs of rankings, by increasing
the number and amplitude of the changes, we increase the space of
possible rankings, effectively increasing the chance of them being
different from each other.

For each interleaving and multileaved comparison method, we
look at the impact on E

bin

at 500 queries of the difference between
rankings using the informational click model, with |R| = 5 rankers,
result lists of length k = 10 and 100 issues of each query. Results
are depicted in Fig. 3 as a heat map of E

bin

depending on the
number of documents moved and the amplitude of the move. We
observe that E

bin

decreases as the difference between rankings
increases (whether this is the number of moves or the amplitude
of the moves) in the same way for all methods, which means that
differences between rankers affect all methods in the same way. We
also observe that OM performs much better than other methods,
which is in line with Fig. 1 at the 100 query issue point.

Returning to RQ3, these results show that the sensitivity of mul-
tileaving methods is affected in the same way as for interleaving
methods when the differences between rankers vary. Interestingly,
this means that multileaved methods can distinguish between rankers
just as well as interleaving methods even when the differences be-
tween them is very small. Hence, multileaved comparison methods
can be used to explore a parameter space using very small steps.

6.4 Bias
In this section, we investigate RQ4. We evaluate fidelity require-

ment (2) from [13] which states that, under random clicks, rankers
should tie in expectation. TD was designed to fulfill this require-
ment. We run experiments with the random instantiation of the
click model (see Section 5.3). When a user clicks on a result list
without any preference for relevant documents, an online evaluation
method that interprets these clicks should not detect any preferences
among rankers. We measure how many preferences each compari-
son method detects when exposed to a random user by comparing
the P̂

ij

of the method to a ground truth that consists of P
ij

= 0.5
for all i, j using E

bin

.
The result is shown in Fig. 4. For all methods, the error quickly

drops to rather low values. Both TD and TDM steadily converge to
values near 0. Within a few hundred queries, their error is below 5%.
In the long run, neither method detects differences among rankers
when it should not.

OI takes much longer to drop below 5% and plateaus higher than
both team draft methods. For OM, it turns out that the number of
multileavings that is sampled, ⌘ (see Section 4.2.1) has a big impact

20

Sensitivity
How does the sensitivity of multileaving methods compare to that of interleaving methods? 

• different rankers 
• easy to distinguish 
• low error

• similar rankers 
• hard to distinguish 
• high error
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of the behavior of the methods when the ratio between the number
of rankers and the number of documents increases. Fig. 2 shows that
the multileaving methods can cope better with an increase in this
ratio than the interleaving baselines. The performance of OM is not
impacted by an increase of this ratio; the two interleaving methods
almost double their error when the ratio increases from 3

10 to 10
3 .

While Table 3 shows that TDM is not impacted by the number of
rankers, in Fig. 2, we see that the error for TDM does increase when
the ratio of rankers per result list length goes up. We attribute this
to the fact that team draft methods always assign a document in an
interleaving to a single input ranker. When there are (many) more
rankers than documents to which they can be assigned, then most
rankers cannot be distinguished from one another. Consequently,
not all P̂

ij

can be updated per comparison.

6.3 Sensitivity
In this section, we investigate RQ3. We study the impact of

the difference between evaluated rankers on interleaving and mul-
tileaved comparison methods using synthetic data as discussed in
Section 5.2. We consider cases when the position of one or more
document(s) changes from one ranking to another (we also inves-
tigated cases when one or more document(s) are replaced by new
ones and obtained similar results). In doing so, we control two
things: the number of documents moved as well as the amplitude of
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click model, with |R| = 5 rankers and result list of length
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versus a ground truth with no pref-
erences, P
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= 0.5 for all i, j. Averaged over 25 repetitions, 9
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the move, i.e., how far away is the moved document located from
its original position. While we only control the difference w.r.t. a
single ranking and not between all pairs of rankings, by increasing
the number and amplitude of the changes, we increase the space of
possible rankings, effectively increasing the chance of them being
different from each other.

For each interleaving and multileaved comparison method, we
look at the impact on E

bin

at 500 queries of the difference between
rankings using the informational click model, with |R| = 5 rankers,
result lists of length k = 10 and 100 issues of each query. Results
are depicted in Fig. 3 as a heat map of E

bin

depending on the
number of documents moved and the amplitude of the move. We
observe that E

bin

decreases as the difference between rankings
increases (whether this is the number of moves or the amplitude
of the moves) in the same way for all methods, which means that
differences between rankers affect all methods in the same way. We
also observe that OM performs much better than other methods,
which is in line with Fig. 1 at the 100 query issue point.

Returning to RQ3, these results show that the sensitivity of mul-
tileaving methods is affected in the same way as for interleaving
methods when the differences between rankers vary. Interestingly,
this means that multileaved methods can distinguish between rankers
just as well as interleaving methods even when the differences be-
tween them is very small. Hence, multileaved comparison methods
can be used to explore a parameter space using very small steps.

6.4 Bias
In this section, we investigate RQ4. We evaluate fidelity require-

ment (2) from [13] which states that, under random clicks, rankers
should tie in expectation. TD was designed to fulfill this require-
ment. We run experiments with the random instantiation of the
click model (see Section 5.3). When a user clicks on a result list
without any preference for relevant documents, an online evaluation
method that interprets these clicks should not detect any preferences
among rankers. We measure how many preferences each compari-
son method detects when exposed to a random user by comparing
the P̂

ij

of the method to a ground truth that consists of P
ij

= 0.5
for all i, j using E

bin

.
The result is shown in Fig. 4. For all methods, the error quickly

drops to rather low values. Both TD and TDM steadily converge to
values near 0. Within a few hundred queries, their error is below 5%.
In the long run, neither method detects differences among rankers
when it should not.

OI takes much longer to drop below 5% and plateaus higher than
both team draft methods. For OM, it turns out that the number of
multileavings that is sampled, ⌘ (see Section 4.2.1) has a big impact
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