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In Blendle you can 
browse through all 
quality 
newspapers and 
magazines
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You only pay for 
what you read, 
with a single 
click
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Articles are 
shown in their 
original layout 
and style, and 
without 
advertisements
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Blendle button
for payments 
per article and 
subscriptions
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Our editors select the 
best articles for our 
email newsletter 
every day
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Personalised 
recommendations

The right articles to 
the right users
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•Should be personalised
•Lots of content
•Lots of different tastes

•Can be personalised
•We know what our users read
•What they didn’t like
•When they read
•…
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Movies and series
• Single consumption
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@anneschuth

Articles
• Single consumption
• Very short shelf-life         cold start problem, Collaborative Filtering won’t work
• Diversity of suggestions very important         Content Based Recommendation won’t work
• A lot of information overlap
• Feedback: implicit through reading behaviour, refunds, also ‘like’ option
• Changing relevance (niche vs popular)



Article enrichment pipeline

Author 
extraction

Semantic
linking

Sentiment 
analysis

Stylometry

Named Entity 
RecognitionPoS-taggingTokenizationLanguage 

detection
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Wikipedia 
concepts@anneschuth



Article enrichment pipeline



Article enrichment pipeline



Article enrichment pipeline



User enrichment pipeline



User enrichment pipeline



User enrichment pipeline



Machine Learning 
Features
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Learning to rank: preference learning

ModelPairwise transform

Enrich EnrichEnrich Enrich

Extract ML Features

Learner to predict

Enrich Enrich

Extract ML Features Rank

Ranking
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Kafka 
- eventsDatabase 

- data warehouse

Spark 
- processing large data

Elastic Search 
- fast search and access

Scikitlearn 
- experimental ML

MLib 
- production ML

Redis 
- fast access 

S3 
- raw content

Cucumber 
- BDD development
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