
Fast Faceted Search in XML

Using XQuery and Indexes in eXist-db

Anne Schuth

anne.schuth@uva.nl

Maarten Marx

maartenmarx@uva.nl

Abstract

We present and compare three implementations of faceted search in
eXist-db, an XML database. The bit-vector based implementation outper-
forms the other two implementations in that performance is near constant
when the size of the database grows. We investigate this method in detail

to pinpoint the source of this speedup. We do so using a micro-benchmark
based on XMark designed for evaluating faceted search.

1 Introduction

For a long time, search engines were geared toward expert users that are aware
of the content of the database being searched. However, the average user of a
web search interface has no clue about this content and often even less about the
exact phrasing of what is being searched. It has been shown useful to provide
users with suggestions (Hearst et al., 2002), and even more useful if a user
knows how many results a refinement of his query would solicit before the actual
refinement takes place. This concept is commonly called faceted search (Burke
et al., 1996; English et al., 2002; Hearst, 2006, 2008, 2009) and is not specific to
any form of data storage. A database of XML documents seems very suitable
to faceted search; XML by nature is fit for storing metadata in the form of
arguments or meta elements. To illustrate, see Figure 1 (following page) for
screen-shots of two real world examples of faceted search.

Facets consist of meta data; in the case of a database with cars, natural
candidates for facets are ‘color’, ‘brand’, ‘price’, etc. Each of these facets can
take a value (a nominal value: ‘red’, ‘blue’, etc. for the ‘color’ facet and a range
‘0-1000’, ‘1000-2000’, etc for the ‘price’ facet). Then, when a user starts searching
by typing for example ‘4 wheel drive’, the respective amounts of retrieved ‘red’

and ‘blue’ 4 wheel drive cars are displayed along with all results for that query
and the user can drill-down with a simple mouse click on facet-value ‘red’ or
‘blue’. For the user, this has the benefit that much of the content of the database
is exposed, both in vocabulary and in volume. The gap between searching and
browsing is bridged (Sacco and Tzitzikas, 2009).

The calculation of the counts for these facet-values is the problem this paper
addresses. Simple pre-calculation of these counts is infeasible; the users’ freedom
of using free-text queries forbids this. The technical challenge is the efficient
partitioning of the results of a (usually free-text) query and computing the
cardinality of each block. How a result set is partitioned depends on the data,
the application, and in some cases also on the result set itself (Dash et al., 2008).

1

Figure 1: Screen-shots of examples of faceted search at LinkedIn and eBay, after
searching with free-text query ‘scientific programmer’ and respectively ‘faceted’.
The facets, their values and counts are in the red boxes.

The contribution of this work is four-fold. We specify an expressive XQuery
language that can capture all aspects of faceted search. We compare 3 implemen-
tations on performance. We introduce an easy to deploy micro-benchmark geared
toward faceted search. And finally we contribute a faceted search extension to
the eXist-db database.

Our experiments show that for smaller datasizes all methods perform fine
for both of our benchmark scenarios. However, the time taken by both the
Naive Method and the Rvdb Method grows with the datasize while the time
taken by the Indexed Method stays near constant. We can conclude that the
bit-vector implementation is the only one which scales. Our average running time
of around 1 second for all queries on all datasets (going up to almost 300K nodes
or 1.5GB) is promising but not good enough. There are two obvious starting
points for improvements: find the reason for the outlier in our experiment, see
Figure 4 (p. 12) and 5 (p. 13), and implement a solution like Wang (2009) for
fast mappings to and from positions in a bit-vector to node-identifiers.

This paper is organized as follows. In the next section we describe and define
our XQuery language features. We then introduce two benchmark scenarios
that we use to compare the three different implementations that are presented
in section 4 (p. 7). We describe and present the results of our experiments in
section 5 (p. 10), after which we describe related work and draw conclusions.

2

2 Specification Language

2.1 XQuery

When dealing with a database of XML documents, XQuery (Boag et al., 2007)
is the language of choice. XQuery is more than just a query language, it is a
functional programming language aimed at transforming XML into XML. Our
database, eXist-db, supports XQuery as a language to develop web-applications
making it even more fit for implementing faceted search, which is an interface
related subject. We extend the XQuery language with 3 functions, described in
the following sections. We define them in the namespace —a module— facet.

2.1.1 Counts

The main goal of our work is implementing an efficient counts() function, as
this is where the heavy computation takes place. This function should take any
arbitrary sequence and return an XML node that holds counts for all facet-values
that are defined on the items in that sequence. We define the structure of this
node using RelaxNG (Clark et al., 2001) as follows:

start = element facets { Facet* }
Facet = element facet {

attribute name { xsd:NCName }, Value*
}

Value = element value {
attribute name { text },
xsd:integer

}

An example would look like:

<facets>
<facet name="location">

<value name="United States">1614</value>
<value name="Barbados">8</value>
<value name="Cape Verde">6</value>
<value name="Samoa">5</value>
<value name="Cacos Islands">4</value>

</facet>
<facet name="quantity">

<value name="1">2006</value>
<value name="2">162</value>
<value name="3">6</value>
<value name="4">1</value>

</facet>
</facets>

The signature of the counts() function that returns this data-structure for a
sequence of nodes is specified as follows:

• facet:counts($nodes as node()*) as node()

Typically $nodes is a sequence representing hits from, for example, a
full-text query. The returned node complies with the schema above.

A common usage would be firing a full-text query (for example ‘gold ’) and then
requesting the facet-value counts to display them along with the results:

let $hits := $doc//item[facet:query(., ‘gold’)]
return

<result>
<hits>{$hits}</hits>
{facet:counts($hits)}

</result>

3

2.1.2 Filter

In a drill-down scenario, always a certain facet-value is chosen. We need a way to
filter a node sequence with this facet-value and therefore introduce the following
function:

• facet:filter($nodes as node()*, (($facet as xs:string, $value as xs:string)*)) as node()*

Where a sequence of ($facet, $value) pairs, in the form of strings, should
be specified and $nodes is the sequence of nodes that has to be filtered.
The filtered sequence is returned.

Note that this function can be used in conjunction with a full-text query, for
example like:

let $hits := $doc//item[facet:query(., ‘gold’)][facet:filter(., (‘location’, ‘Samoa’))]
return

<result>
<hits>{$hits}</hits>
{facet:counts($hits)}

</result>

Note that it would be easier to optimize a single call to the filter() function
than multiple calls in a row.

In other words, the statement

$doc//item[facet:filter(., ((‘location’, ‘Samoa’), (‘quantity’, ‘2’)))]

is probably implemented more efficiently than

$doc//item[facet:filter(., (‘location’, ‘Samoa’))][facet:filter(., (‘quantity’, ‘2’))]

2.1.3 Add

Apart from the method described in section 2.3 (next page), it is convenient to
be able to programmatically add —store— the bit-vector for a facet-value on
the fly. Such a feature would be useful to cache queries that are often used or
to allow a user to store a query for later reuse. The add function is defined as
follows:

• facet:add($nodes as node()*, $facet as xs:string, $value as xs:string) as xs:boolean

Where $nodes is the sequence that should be stored in the facet $facet
under value $value. True is returned on success.

Note that using this function, arbitrary sequences can be stored as a facet-value,
potentially making little sense to an end user. Also note that this function is
not a function in the mathematical sense, it has a side effect.

let $hits := $doc//item[facet:query(., ‘gold’)][facet:filter(., (‘location’, ‘Samoa’))]
return facet:add($hits, ‘user-queries’, ‘gold-samoa’)

2.2 XPath

The functions we use in XQuery are effectively also functions in XPath (Berglund
et al., 2007), which is a subset of the XQuery language. So we get additional
XPath functionality for free. This is an advantage since it means we can use the
same functions in XSLT as well.

4

2.3 Index Specification

For our indexed method only, see Section 4.3 (p. 9), there needs to be some way
of telling the indexing engine what nodes we are considering to be ‘documents’,
what the facets are and where in the database their values can be found. The
eXist-db database has a mechanism in the form of a collection.xconf file
for each collection, to configure its indexes. We extended the syntax for this
file to allow for specifying facets. The syntax for the index definition of facets
is defined as follows and replaces the lucene element, of which the syntax is
partially borrowed:

Facets = element facets { Text* }
Text = element text {

attribute qname { xsd:NCName },
Facet*

}
Facet = element facet {

attribute name { xsd:NCName },
attribute select { text { pattern = "\.?(/|//)?\@?\w+" } },
attribute type { "path" | "multi" | "simple" }?

}

As an example, the full collection.xconf definition we used for our benchmark,
see the next section, is this:1

<collection xmlns="http://exist-db.org/collection-config/1.0">
<index>

<fulltext default="none" attributes="no"/>
<facets>

<text qname="item">
<facet name="location" select="location"/>
<facet name="quantity" select="quantity"/>
<facet name="featured" select="./@featured"/>
<facet name="category" select="incategory/@category" type="multi" />

</text>
</facets>
<create path="//location" type="xs:string"/>
<create path="//quantity" type="xs:string"/>
<create path="//@featured" type="xs:string"/>

</index>
</collection>

This example tells the engine that for any item element it encounters while
indexing, it should look for a location and quantity element under it and for
a feature and category attribute at the designated locations.

The three create elements tell the engine that it should also create range
indexes for any location, quantity and @featured. These indexes will be used
by both the naive and rvdb method, see Section 4.1 (p. 7) and 4.2 (p. 8).

3 Benchmark

To test in how far one approach outperforms another, we developed a task
specific benchmark, a so-called micro-benchmark (Afanasiev et al., 2005, 2006).
Such a benchmark is aimed at evaluating very specific features of a language
or an optimization. In our case we have three different implementations for the
same semantics and we want to compare their performance. None of our three
implementations is better in that it adds functionality to our language; each
implements the function counts(), as in Section 2.1.1 (p. 3).

1We use path attributes instead of qname attributes in the range index definitions because

of a known bug in the eXist-db implementation of the util:index-keys function, which has been

fixed in later releases.

5

Figure 2: A screen-shot of a faceted search interface on top of the XMark database.

XMark scaling Size (MB) # Files # items

0.1 12 69 2175
0.2 24 136 4350
0.4 46 272 8700
0.8 92 542 17400
1.6 184 1084 34800
3.2 368 2166 69600
6.4 735 4330 139200

12.8 1500 8660 278400

Table 1: The data sizes, in megabytes and number of items, for different scaling
factors.

The scenarios use the XMark dataset (Schmidt et al., 2002) in various sizes,
with scaling factor 0.1 up to 12.8, see Table 1 for details.2 The XMark database
models an Internet auction site —much like eBay— and is therefore well suited
for our use-case. In our scenarios we envision an item search engine, where
items are the objects that are for sale; the item nodes are the ‘documents’. A
screen-shot is depicted in Figure 2. We use three properties of these items as
their facets: location (up to 232 values), quantity (up to 7 values) and featured

(two values). A full-text search index is defined on all text —//text()— below
the item node, this index can be queried using the free text input box.

3.1 Scenario A

A first scenario does not use the full-text index. The user arrives at an interface —
a website— and is presented with all results (although only the top n is displayed)
together with the facet-values and their counts. He then consecutively drills
down by clicking facet-value ‘location’ = ‘United States’, ‘quantity’ = ‘2’ and
‘featured’ = ‘yes’. The relative data sizes for these four steps are given in Table 2.

2The exact command we used is ./xmlgen.Linux -f [factor] -s 100

6

scenario step full-text
facets

% items
‘location’ ‘quantity’ ‘featured’

A

1 - - - - 100%

2 - ‘United States’ - - 76%

3 - ‘United States’ ‘2’ - 5%

4 - ‘United States’ ‘2’ ‘yes’ 0.5%

B

1 ‘gold’ - - - 6.7%

2 ‘gold’ - ‘1’ - 6.2%

3 ‘gold’ ‘Barbados’ ‘1’ - 0.05%

4 ‘gold’ ‘Barbados’ ‘1’ ‘yes’ 0%

Table 2: Approximate relative data sizes in percentages of the total number of items

for each step in Scenarios A and B. Also see Table 1 (page before), for absolute
size per dataset.

In this scenario, the first two steps are not very restrictive, so each method has
to deal with large portions of the data.

3.2 Scenario B

In the second scenario, Scenario B, we start off with Q14 from the original
XMark proposal (Schmidt et al., 2002). Again, see Table 1 (preceding page)
for sizes of the dataset. This scenario is very different from Scenario A in that
it starts off with a much smaller portion of the datasets. Also, the last step
is a bit artificial: it does not return any results for any of the datasets (a user
would probably never end up in that situation). It is still interesting, however,
to analyze how efficient each method is in that border case.

4 Three Methods

After Van den Branden (2010), we test 2 methods and call them the Naive

Method and the Rvdb Method. Additionally, we introduce an index and bit-
vector based method which we call the Indexed Method. Only the Naive Method

is pure XQuery, the others use eXist-db specific features that exploit its indexes.
Each of these three methods implements the function counts(), see 2.1.1 (p. 3),
that takes a sequence of hits and returns counts for facet-values.

4.1 Naive Method

A simple and naive way of computing facet-value counts would be firing the free-
text query together with all facet-values and record the lenght of each returned
sequence. For a small dataset and a small number of facet-values this might
work, but the cost of this method grows linearly with the number of facet-values,
potentially harming performance severely. Our Naive Method does exactly this.
In Listing 1 (following page) we show the implementation of the Naive Method

by Van den Branden (2010), as we used it in our experiments.
It should be noted that the function util:eval() is not native XQuery or

XPath. The function could be rewritten without using util:eval(). However,

7

declare function local : counts ($h i t s){
l e t $ f a c e t s := (” $h i t s / l o c a t i o n ” ,

” $h i t s / quant i ty ” ,
” $h i t s /@featured ”)

l e t $ l a b e l s := (” l o c a t i o n s ” ,
” quan t i t i e s ” ,
” f ea tu r ed ”)

return

<f a c e t s >{
for $ f a c e t at $p in $ f a c e t s
l e t $ f a c e t v a l u e s := ut i l : eval ($ f a c e t)
return

<facet name=”{ $ l a b e l s [$p]} ”>{
for $a in distinct−values ($ f a c e t v a l u e s)
return

<value name=”{$a}”>
{count ($ f a c e t v a l u e s [. eq $a])}

</value>

}</ f a c e t s >

} ;

Listing 1: Naive Method

declare function local : cb ($term , $data ,) {
<value name=”{$term}”>{$data [1]} </ value>

} ;

declare function local : counts ($h i t s){
l e t $cb := ut i l : function (xs :QName(” l o c a l : cb”) , 2)
l e t $ f a c e t s := (” $h i t s / l o c a t i o n ” ,

” $h i t s / quant i ty ” ,
” $h i t s /@featured ”)

l e t $ l a b e l s := (” l o c a t i o n s ” ,
” quan t i t i e s ” ,
” f ea tu r ed ”)

return

<f a c e t s >{
for $ f a c e t at $p in $ f a c e t s
l e t $va l s := ut i l : eval ($ f a c e t)
return

<facet name=”{ $ l a b e l s [$p]} ”>
{ut i l : index−keys ($vals , ”” , $cb , 10000)}

</facet>

}</ f a c e t s >

} ;

Listing 2: Rvdb Method

we prefered sticking to the original as it was proposed by Van den Branden
(2010).

4.2 Rvdb Method

The Rvdb Method was recently introduced by Van den Branden (2010). It is
a method that exploits eXist-db specific range indexes. We list the source in
Listing 2.

The main feature of this method is the use of the util:index-keys() func-
tion, this function causes all index-keys defined on a given node sequence to be
reported to a callback function.3

3See http://demo.exist-db.org/exist/functions/util/index-keys

8

http://demo.exist-db.org/exist/functions/util/index-keys

4.3 Indexed Method

Our, supposedly fast, indexed method is different from the other two methods
in that it is not implemented in XQuery, but in Java instead. Thus, we can
not list the XQuery source code, we describe our implementation instead. Our
implementation makes heavy use of Bobo-Browse (Wang, 2010), which is “a
Faceted Search implementation written purely in Java, an extension of Apache
Lucene”. This fits in naturally with eXist-db since that database is already
using Apache Lucene under the hood for its full-text index. So, essentially, what
we are doing is extending the full-text search engine of eXist-db with Faceted
Search capabilities.

4.3.1 Indexing

Our indexer starts by looking at the collection.xconf file, as described in
Section 2.3 (p. 5) and adds a Bobo-Browse FacetHandler for each facet it
encounters there. The eXist-db database uses a SAX (Simple API for Xml,
Megginson, 1997) parser when indexing. All xml files that are added to the
database are streamed through all indexers node by node. An indexer can listen
to this stream of nodes and act as it wishes. In our case, we simply add a Lucene
‘document’ with fields for each facet value every time we encounter a node we
are interested in.

4.3.2 Querying

When querying our index, we will need an efficient way to calculate counts.
Others have gone ahead (O’Neil, 1989) and introduced the use of bit-vectors.
One bit-vector for each facet-value pair, with each bit in those vectors represents
a document4. The bit for a document is turned to 1 for a facet-value if the
facet-value is present in the document. These bit-vectors can be prepared at
index time. Then, when a full-text query is fired a bit-vector can be constructed
for the resulting document set. Calculating the counts for each facet-value then
comes down to intersecting this last bit-vector with all other bit-vectors and
calculating the cardinality. This functionality has been built in to Bobo-Browse.

4.3.3 Calculations with Bit-Vectors

Behind the scenes, Bobo-Browse uses efficient algorithms to deal with the facets.
Nievergelt and Hinrichs (1993, ch. 8.3) describe a way to calculate the cardinality
—the facet-value count— of a bit-vector efficiently. Instead of it being an O(n)
operation, with n the length of the bit-vector, it can be performed in O(log2 n) by
using a divide and conquer algorithm that exploits the capability of a processor
to process a word5 in parallel. The algorithm does so by viewing a word as a bit
string, and recursively breaking this string into two parts until all bit strings are
of length 1. Then, recursively summing up the parts leads to the bit sum; the
cardinality. The real benefit comes from the fact that this summing up can be
done in parallel when the words are lined up properly using bit-shifts.6

4Where a ‘document’ in our XML setting could be a smaller unit; an arbitrary XML node.
5In our experiments we use words consisting of 64 bits, the size of the registers of the

processor we use, as it is implemented by the java.util.BitSet.
6See Nievergelt and Hinrichs (1993, p. 76) for details.

9

This same parallel capability is also exploited for the bitwise-and operations;
both bit-vectors are split up in words and corresponding words from both vectors
are and -ed together in parallel, leaving us with n

s
, with s the size of the word

7,
operations instead of the n operations of a naive implementation.

When the number of facet-values goes up, the significance of these optimiza-
tions becomes more and more apparent.

4.3.4 Efficient Mappings

While we get much of the implementation for free by using Lucene in combination
with Bobo-Browse, it also leaves us with a difficulty. Lucene is designed in such a
way that it assigns its own identifiers to documents it receives for indexing. The
original eXist-db implementation of full-text search —that also uses Lucene—
solves this by storing the eXist-db xml node identifiers into the Lucene index
as fields. We do the same, so querying or drilling down is not a problem; the
translation from a Lucene result into a sequence of xml nodes is trivial; it is a
matter of requesting the stored field. The other way around, however, from a
sequence of xml nodes to Lucene document-identifiers is not possible this way.
Wang (2009) encountered the same problem while working on the LinkedIn data
and implemented a solution into Zoie (Wang, 2008). We plan on using Zoie for
this purpose but presently we use a very basic approach. We query the whole
Lucene index and afterwards filter out all irrelevant nodes in the context of our
query.

5 Experiments

5.1 Experimental Setup

We run our experiments on a machine with an Intel Pentium Dual-Core

2.00GHz processor with 2GB of memory running Fedora Core 8. The eXist-db
version we use is a snapshot of the trunk made on November 5th 2010,8 run
with Sun Java 1.6.0 16 without adjusting any (memory) settings except for the
-Xmx1500m flag to avoid running out of heap space.

Furthermore, we use XCheck (Afanasiev et al., 2006) as a wrapper around
our experiments. Each experiment is run 4 times and the average runtime is
taken over the last 3 runs, to avoid measuring any possible warm-up times. All
times are measured in seconds, and we report total times, so including time
spent on serialization as this is handled by eXist-db and should therefore be
equal for all methods.

5.2 Scaling

To find how each of the three methods scales, we have run Scenario A and B for
all datasets listed in Table 1 (p. 6). We present the average processing time over
all steps (from both scenarios) per method per datasize in Figure 3 (following
page). Detailed results per step, for each of the three methods are in Figure 4
(p. 12) and 5 (p. 13) for Scenario A and B respectively.

7Again, 64 bits in our experiments.
8Our exact code can be found at: http://exist.svn.sourceforge.net/viewvc/exist/

branches/anneschuth/

10

http://exist.svn.sourceforge.net/viewvc/exist/branches/anneschuth/
http://exist.svn.sourceforge.net/viewvc/exist/branches/anneschuth/

Figure 3: The average processing time over all steps (from both scenarios) per method
for a growing dataset. Note the log scale of the vertical axis.

Looking at Figure 3, we see that initially the Indexed Method performs worse
than both other methods but remains near constant while the time taken by
both the Naive Method and Rvdb Method is polynomial. For datasets larger
than about 400MB it is preferable to use the Indexed Method. It should also be
noted that an average processing time of about 1 second per query is generally
not acceptable in a user interface.

Both Figure 4 (following page) and 5 (p. 13) illustrate how the first drill-down
step —step 2 in each scenario— for the Indexed Method consequently takes a
lot of time. While all other timings for that method stay below or around 0.2
seconds, step 2 goes up to 8 seconds. We are not able to pinpoint the cause of
this behavior yet. We do, however, point out that when we solve this issue the
method will become within a very acceptable range with respect to processing
time.

If we leave our Indexed Method aside, it is interesting to see that the Rvdb

Method outperforms the Naive Method method for the earlier steps and vice
versa for the later steps.

6 Conclusions

We conclude that the bit-vector implementation is the only one which scales
with the datasize; the processing time stays near constant. Such behavior is a
very desirable one in many applications. Our average running time of around 1
second for all queries on all datasets (going up to almost 300K nodes or 1.5GB)
is promising but not yet good enough.

11

Figure 4: Processing time in seconds per step of Scenario A, for different datasizes,

see Table 1 (p. 6). Figures are for the Naive Method, Rvdb Method and the Indexed

Method. Note the log scale of the vertical axis.

The development of the faceted search micro-benchmark based on XMark
and its application using XCheck proved useful. The plots give quick insights in
the scalability of the algorithms, possibilities for improvements and anomalies in
the code. A future version of the Benchmark could include a way to measure
scalability over the number of facet-value pairs.

6.1 Future Work

There are two obvious starting points for improvements: find the reason for the
outlier in our experiment, as mentioned in Section 5.2 (p. 10). Secondly, as
mentioned in Section 4.3.4 (p. 10), we should implement a solution like Wang
(2009) for fast mappings to and from positions in a bit-vector to node-identifiers
probably by integrating Zoie.

Besides improvements in our implementation of the Indexed Method, we
would like to extend our experiments. It would be insightful to investigate the
behavior of the three methods when we vary the number of facet-values.

Also, a more precise measurement of where exactly in which method time is
spent would give a clear indication of where we could still gain something.

And lastly, we did not mention the behavior of the methods under (heavy)
updates of the dataset; we assumed a static dataset where documents are never
removed or added. It is very likely that for such a scenario another method
should be prefered.

Acknowledgements Maarten Marx acknowledges the financial support of
the Future and Emerging Technologies (FET) programme within the Seventh

12

Figure 5: Processing time in seconds per step of Scenario B, for different datasizes,

see Table 1 (p. 6). Figures are for the Naive Method, Rvdb Method and the Indexed

Method. Note the log scale of the vertical axis.

Framework Programme for Research of the European Commission, under the
FET-Open grant agreement FOX, number FP7-ICT-233599. This research was
supported by the Netherlands organization for Scientific Research (NWO) under
project number 380-52-005 (PoliticalMashup).

References

Afanasiev, L., Franceschet, M., and Marx, M. (2006). XCheck: a platform
for benchmarking XQuery engines. In Proceedings of the 32nd international

conference on Very large data bases, page 1247–1250.

Afanasiev, L., Manolescu, I., and Michiels, P. (2005). MemBeR: a micro-
benchmark repository for XQuery. Database and XML Technologies, page
144–161.

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J.,
and Siméon, J. (2007). XML path language (XPath) 2.0, W3C recommendation
23 january 2007.

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., and Simeon,
J. (2007). XQuery 1.0 an XML query language, W3C recommendation 23
january 2007.

Burke, R. D., Hammond, K. J., and Young, B. C. (1996). Knowledge-based
navigation of complex information spaces. In Proceedings of The National

Conference On Artificial Intelligence, volume 462, page 468.

13

Clark, J., Murata, M., et al. (2001). Relax NG specification. OASIS Committee

Specification, 3.

Dash, D., Rao, J., Megiddo, N., Ailamaki, A., and Lohman, G. (2008). Dynamic
faceted search for discovery-driven analysis. In Proceeding of the 17th ACM

conference on Information and knowledge mining - CIKM ’08, page 3, Napa
Valley, California, USA.

English, J., Hearst, M., Sinha, R., Swearingen, K., and Yee, K. P. (2002).
Hierarchical faceted metadata in site search interfaces. In CHI’02 extended

abstracts on Human factors in computing systems, page 628–639.

Hearst, M. (2006). Design recommendations for hierarchical faceted search
interfaces. In ACM SIGIR Workshop on Faceted Search, page 1–5.

Hearst, M. (2008). Uis for faceted navigation: Recent advances and remaining
open problems. In Proc. 2008 Workshop on Human-Computer Interaction

and Information Retrieval.

Hearst, M. (2009). Search user interfaces. Cambridge Univ Press.

Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., and Yee, K. P.
(2002). Finding the flow in web site search. Communications of the ACM,
45(9):42–49.

Megginson, D. (1997). Sax: The simple api for xml. http://www.megginson.

com/SAX/.

Nievergelt, J. and Hinrichs, K. H. (1993). Algorithms and data structures: with

applications to graphics and geometry. Prentice-Hall, Inc. Upper Saddle River,
NJ, USA.

O’Neil, P. (1989). Model 204 architecture and performance. High Performance

Transaction Systems, page 39–59.

Sacco, G. M. and Tzitzikas, Y. (2009). Dynamic taxonomies and faceted search:

theory, practice, and experience. Springer-Verlag New York Inc.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I., and Busse, R.
(2002). XMark: a benchmark for XML data management. In Proceedings of
the 28th international conference on Very Large Data Bases, page 974–985.

Van den Branden, R. (2010). As a matter of fac(e)t: (mimicking)
faceted searching in eXist. http://rvdb.wordpress.com/2010/10/06/

mimicking-faceted-searching-in-exist/.

Wang, J. (2008). Zoie. http://sna-projects.com/zoie/.

Wang, J. (2009). Inverted index: Lucene docid, UID mapping and pay-
load. http://invertedindex.blogspot.com/2009/04/lucene-dociduid-mapping-
and-payload.html.

Wang, J. (2010). Bobo-Browse. http://code.google.com/p/bobo-browse/.

14

http://www.megginson.com/SAX/
http://www.megginson.com/SAX/
http://rvdb.wordpress.com/2010/10/06/mimicking-faceted-searching-in-exist/
http://rvdb.wordpress.com/2010/10/06/mimicking-faceted-searching-in-exist/
http://sna-projects.com/zoie/
http://code.google.com/p/bobo-browse/

	Introduction
	Specification Language
	XQuery
	Counts
	Filter
	Add

	XPath
	Index Specification

	Benchmark
	Scenario A
	Scenario B

	Three Methods
	Naive Method
	Rvdb Method
	Indexed Method
	Indexing
	Querying
	Calculations with Bit-Vectors
	Efficient Mappings

	Experiments
	Experimental Setup
	Scaling

	Conclusions
	Future Work

