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Abstract

Push notifications on mobile devices are an important way for users to stay up to date
with news. Push notifications can also be a major source of annoyance for users: being
interrupted at the wrong time for something you do not care about is frustrating. It is
crucial to ensure the right push is sent to the right user at the right moment.

In this paper we address this problem of personalized push notifications. We introduce
our streaming push personalization pipeline, describe how we personalize pushes, discuss
challenges, and end with open questions.

1. Introduction

The abundance of online news services makes recommender systems convenient techniques
to generate personalized recommendations and help users to discover relevant articles. In
such systems, recommendations are typically created by learning to generate a personalized
ranked-list for each user. The recommendations are then displayed as a list of items on the
web or mobile apps.

Despite the presence of many studies where recommendations are generated as a ranked
list of items (Hopfgartner et al., 2016), to our knowledge, there are no studies that propose
to serve personalized news recommendation with push notifications. A push notification is
a fast and effective way to inform users about the latest and most important news via an
in-app message on a mobile device or via a browser message.

In this work we propose a distributed system to create personalized push notifications
in the context of a major European news publisher. In Section 2 We first motivate why
it is important to personalize push notifications. We then describe our Personalized Push
Notification system and its architecture in Section 3. In Section 4 we discuss open questions
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Figure 1: Category subscription (left) and a the design of a push notification (right) of the
AD news app with a recommendation reason and feedback buttons.

and challenges of making personalized pushes. We briefly describe some related work in
Section 5 and finally we draw some conclusion in Section 6.

2. News Consumption via Push Notifications

In this section we describe the current model of sending push notifications, as used at DPG
Media,1 discuss the challenges and limitations of the current system and motivate the
importance of using a personalized push notification system.

Currently, push notifications at DPG Media are not personalized. Instead, users of
most mobile apps of DPG Media can subscribe to one or more predefined news categories2

in which they are interested in. A news editor then decides whether a newly published article
should be pushed to all users who have subscribed to its category. The push-worthiness of
the article is thus determined by humans, based on factors such as urgency and importance
of the events described in the article. Figure 1 illustrates the category subscription and
a sample push notification from Algemeen Dagblad (AD), the app of one of the most
popular newspapers in Europe, published by DPG Media.

The existing, non-personalized, setup suffers from several issues. First and foremost,
not every article that is pushed within a specific category is relevant to all the users who
subscribed to that category. For instance, within the sports category, news editors can
decide to push articles about soccer, cycling, darts, formula 1 etc., however a user subscribed
to the sports category will typically not have an interest in all of these subcategories.

Second, the push-worthiness of a news article is subjective and is not necessarily equal
for all users. For example, whether or not a piece of news about formula 1 championship
is important and should be pushed is subject to the opinion of the news editor and might
not necessarily be relevant to the user.

1. DPG Media is a major publisher of newspapers in the Netherlands, Belgium, and Denmark.
2. Common categories are general news, sports, or show.
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Finally, since users can only subscribe to a limited number of broad categories, news
editors have no means of reaching smaller audiences than those subscribed to the broad
categories. As a result, our editors only push very few articles, based on their expected
relevance to a large audience. Niche articles, however, will never be pushed to anyone since
there is no way for editors to reach a niche audience.

With personalized push notifications, we aim to address the above shortcomings. We
want to bring niche articles to only those people who want to read them, while simulta-
neously filtering out articles that are irrelevant for a given user. Our first instantiation of
niches is hyper locality: articles that are specific to a very small region are typically only
interesting to a small number of users.

3. Personalized Push Notification

We address the challenge of news personalization with personalized push notifications. Our
goal is to find the most relevant news for each user while still bringing diverse news, hence
keeping the filter bubble (Pariser, 2011) to a minimum. More specifically, personalized push
notifications should meet the following criteria:

• Personalized: Push notifications should be personalized, that is, the interests and
the preferences of the users should be taken into account.

• Explainable: The reason why a push notification was sent should be explainable to
justify the recommendations and establish a ”sense of forgiveness” when users do not
find the recommendations relevant to them (Van Barneveld and Van Setten, 2004).

• Include important news: Regardless of the degree of personalization, push notifi-
cations should still inform users about breaking news and important updates.

• Diversity and opposing opinions: To make sure the personalized recommenda-
tions do not create filter bubbles for users, the system should make sure that rec-
ommendations are diverse and are not necessarily supporting the opinion that users
often read. In particular for a news product, as opposed to a product that is merely
entertainment, it is important to maintain objectivity.

• (Hyper-)local news: In particular, (hyper-)local news can only ever be pushed when
push is personalized. (Hyper-)local news is only relevant to very few users, but to
these users, it is typically highly relevant: users care about what happens around
the corner. This type of news is not pushed in non-personalized systems: categories
that users can subscribe to will never be fine-grained enough. More importantly, in
a non-personalized system, human editors will never be able to identify all the small
regions an article is relevant to.

• Anonymous users: The majority of the readers are users without an account. The
system should be able to learn the preferences of such users.

• Address the cold-start problem: An inherent challenge in news recommendation
is the cold-start problem: news is most relevant shortly after it is published. At
that moment, there is no or a very limited number of interactions on the newly
published articles and it is therefore not possible to effectively exploit algorithms such
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Figure 2: The high level architecture of the personalized push notification pipeline. The
personalized push pipeline is described in more detail in Figure 3.

Figure 3: The architecture of the push pipeline. Green blocks are Kafka topics, blue blocks
are consumer-producer components. RESTful APIs are depicted in gray.

as collaborative filtering as they heavily rely on user-item interactions. The system
should be capable to effectively exploit the content of news articles to tackle the
cold-start problem.

3.1. Architecture

We propose a distributed, extensible and scalable architecture consisting of several decou-
pled components that communicate using an asynchronous messaging system. We also use
Redis, a distributed cache system, in several components to make sure the pipelines can
effectively handle the large traffic of incoming articles and user interactions. Figure 2 il-
lustrates the high-level architecture of our system. Our system consists of three pipelines,
each with a set of independent components:

• Push pipeline: this pipeline processes newly published articles and pushes them to
the relevant users.

• Profiler pipeline: this pipeline processes users’ interactions and maintains their
profiles.

• Evaluation pipeline: this pipeline decides about the models that should be used,
maintains experiments and A/B testing and collect users’ feedback to tune models.

In the next section, each pipeline is described in more detail.
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3.1.1. Push pipeline

As soon as an article is published by a journalist, the article is picked up by the push
pipeline. The article is then enriched and stitched to candidate users. The stitched user-
item candidates are then classified and the accepted candidates are pushed to the users.

Figure 3 illustrates the architecture of the push pipeline. The pipeline consists of eight
independent components that communicate asynchronously in a streaming fashion using
Kafka:3

• Enricher: Given an article in JSON format with fields including title, raw text, and
author, the Enricher adds metadata including named entities, sentiment (Pang et al.,
2002), and IPTC topics.4

• Stitcher: Given an enriched article, the Stitcher queries the user profile for all users
that might be interested in the article. It produces a tuple consisting of an article and
a user profile, i.e., a user-item, to the next Kafka topic.

• Featurizer: Given a user-item, the Featurizer extracts features and adds them to
the next Kafka topic. Some examples of features are: 1) the degree to which a user
is interested in the location of the article, 2) cosine similarity between a content
embedding of the article and the user, 3) the amount of interest the user showed
in the author of the article. Currently we use a Word2Vec model (Mikolov et al.,
2013) to produce embeddings of users and articles from their Bag-of-Words (BoW)
representations. A user’s BoW is the aggregation of the BoW of the articles that they
read in the past.

• Classifier: Given the user-item features, the Classifier decides whether the item is
relevant for the user. If relevant, the Classifier adds the item to the next Kafka topic.

• Modeler: Given a historical dataset of user profiles and items, the Modeler allows
for creating classification models for the Classifier.

• Bouncer: Given an incoming message from a Kafka topic, the Bouncer decides to
add it to the next Kafka topic or not, based on business rules such as a limit on the
total number of pushes we send on a day.

• Switcher: Given the accepted push candidates, the switcher dispatches the push
candidates to different A/B buckets using our A/B testing service. Depending on the
configuration of the bucket that a push candidate is assigned to, the switcher decides
whether a push candidate should be pushed or not. Bouncer also makes sure that the
items that are already pushed to a users are not pushed again.

• Pusher: Given user-items, the Pusher formats the actual push notification. Fur-
thermore, it adds a message to the topic for updating the profile and notifying the
AB-platform that a push notification is sent out.

Note that all our components can be scaled up horizontally with demand.

3. Kafka calls its streams topics. Components can produce messages to topics that other components can
then consume from. See https://kafka.apache.org.

4. See http://cv.iptc.org/newscodes.
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Figure 4: The architechture of the profiler pipeline.

3.1.2. Profiler pipeline

An important aspect of a recommender system is to be able to properly represent a user.
In our system, a user is represented by a rich profile that is created based on the users’
interaction data and is further enriched with article data and potentially contextual infor-
mation. We continuously update user profiles while also keeping daily records, i.e., a single
representation of each user is created every day. The daily user profiles are later aggre-
gated, with an aggregator job, to have a more complete representation of users. We use
Elasticsearch5 to store user profiles. Daily profiles are also stored in a Redis cache to avoid
frequent I/O and to improve the scalability of the pipeline.

Representing users with daily profiles has two advantages. First, the model can be
trained with a varying window of interaction data, depending on the intended length of the
time window. A benefit of this approach is that we can train and predict with only recent
user interactions and therefore the recommendations are adapted with the change of user
preferences over time. Recency has been shown to be effective in generating recommenda-
tions (Li et al., 2014). Second, the granularity of daily profiles makes it easy to discard old
interactions. This is particularly important with the new GDPR regulations 6 since online
services are not allowed to keep user interaction histories indefinitely. In our system, this
is achieved by deleting old daily profiles.

Figure 4 illustrates the profiler pipeline. User events are collected from different chan-
nels, processed and persisted to daily Elasticsearch indices. The profiles are accessible
through a RESTful API, which is used by the push pipeline.

3.1.3. Evaluation Pipeline

Our pipeline integrates an ongoing evaluation process that runs multiple experiments with
A/B testing and collects feedback on each experiment to adjust models. All push candidates
that are created by the push pipeline are assigned to an experiment and a bucket that is
determined by our A/B service. The evaluator service evaluates the performance of each
bucket based on the collected feedback and provides insights about our experiments.

3.2. Modeling

Our setup allows the integration of any recommendation model to our pipeline. The modular
setup of the Featurizer and Classifier makes it possible to run multiple classification models.
Our current model combines a content similarity score with a location overlap score. The

5. https://www.elastic.co/
6. https://gdpr-info.eu/

41

https://www.elastic.co/


Loni Schuth Haas Jansze Visser Wees

content similarity score is the cosine similarity between the content of the item and the
aggregated content read by a user, as stored in his/her user profile.

The location overlap score is a weighted sum of two location ratios: the first measures
the ratio of the extracted locations in the article to the number of locations the user has
previously read about. The second term measures the ratio of the locations in the article to
the number of locations that the user has previously physically visited while reading articles
in the AD app. Formally, we calculate the location overlap score as follows:

loverlap = w
|luser ∩ litem|
|luser|

+ (1− w)
|gluser ∩ litem|
|gluser|

. (1)

where luser is the set of article locations previously read by the user, glitem is the set
of physical locations of the user while reading articles in the AD app, litem is the set
of extracted locations from the article, and w is a weight parameter that controls the
contribution of the above ratios on the calculated score. In our current setup, based on
an experiment on a small number of users, we found w = 0.7 to be an appealing value for
the weight parameter. Future work involves further tunning of this parameter based on
experiments on larger number of users.

4. Future Work and Open Questions

Personalizing push notifications breaks some new ground. Below are our biggest challenges.

• Daily limits: Imagine the following scenario: we limit the number of push notifica-
tions per user per day to 10, and in the morning there is a series of articles that is
urgent and relevant to a user. What should we do? Should we deplete the 10 pushes
right away, not knowing what the rest of the day might bring us? We currently limit
the number of pushes to 1 per 5 minutes, 2 per hour, and 10 per day. But we plan to
experiment with these settings and are considering personalizing these as well.

• Diversity: As mentioned in Section 3, we aim to recommend diverse news to users.
Diversity involves both near duplicate prevention and topic diversification. Since
push recommendation is not a ranking problem, diversity becomes an issue as most of
the existing literature on diversification focus on diversifying top-N recommendation
lists (Hurley and Zhang, 2011). It is not straightforward to get a holistic view on
all the sent push notifications in the way we can do this when composing a ranking.
Classical diversity algorithms, such as maximal marginal relevance – MMR, (Carbonell
and Goldstein, 1998) – are therefore not directly applicable. We can, however, take
into account the similarity of an article to articles we pushed earlier. Currently, we
do this to avoid sending near duplicate pushes. Future plans include exploitation of
diversification algorithms that diversify the topics that are covered for each user.

• Explainability: In Figure 1 we show a recommendation explanation right below
the push notification “Because we think you are interested in World Cup 2018.” We
currently do not support this feature, but we consider providing the most prevalent
reason that caused our algorithm to push this specific article to this user, for example
using the approach introduced by ter Hoeve et al. (2018).
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• Explicit Feedback: Once we provided recommendation reasons, we intend to provide
users with a means to give feedback on those reasons. In Figure 1 we show feedback
buttons that are intended for a user to provide feedback, not on this specific article
but on the reason that caused us to push this article. This type of feedback can readily
be used to update the profile we maintain for this user.

• Timing: Some content is less time sensitive and can be scheduled for the right time
for a user. For example, the relevance of articles about parenting depends on a user’s
life phase. To be able to recommend such articles to users at the right moment, we
need a classifier that predicts the ‘expiration date’ of an item. Currently, we only
push articles that are at most 1 hour old.

5. Related Work

The majority of the published articles on news recommendation adapt content-based meth-
ods to address common challenges in news recommendation such as cold-start, sparsity,
and recency (Karimi et al., 2018). Moreover, news recommender systems should be scalable
and fast to be able to serve real-time recommendations to a large number of users in a few
milliseconds. The work of Lu et al. (2014) is an example of a scalable news recommender
system where the scalability is achieved by adapting MinHash clustering to search similar
users within smaller clusters. Doychev et al. (2014) propose a scalable architecture that
could address the short-response-time requirement of the Plista news personalization chal-
lenge. Their model benefits from pre-computed recommendations that are stored in a Redis
cache while the recommendations are updated in the background as frequently as possible.

From the modeling perspective, (Kompan and Bieliková, 2010) and (IJntema et al.,
2010) are examples of content-based methods where TF-IDF and ontology-based concepts
are used to construct user profiles and find similar articles. The work of Montes-Garcia
et al. (2013) is an example where the geographical proximity of users to news articles is
exploited as an indication of the relevance of the articles to users.

6. Conclusion

In this paper, we present an overview of our streaming personalized push notification frame-
work for the news domain. We propose an adaptive and scalable system that is capable of
integrating different recommender models to build personalized push notifications. In con-
trast to the mainstream recommender system models where recommendations are typically
served as a list, personalized push notifications are arbitrary recommendations that can be
sent to users at any time.

Due to the nature of personalized push notifications for news, recommendations should
be generated real-time when articles are published. Building such a system requires a proper
architecture that can address issues such as scalability, performance, cold-start, timing and
daily limits. Moreover, the system should be able to generate diverse, explainable and
fair recommendations. Our distributed system is capable of plugging various models and
constraints as different components to address the above issues.
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