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Abstract

In a Statistical Machine Translation system many models, called features, com-
plement each other in producing natural language translations. In how far we
should rely on a certain feature is governed by parameters, or weights. Learning
these weights is the sub field of SMT, called parameter tuning, that is addressed
in this thesis. Three existing methods for learning such parameters are compared.
We recast MERT, MIRA and Downhill Simplex in a uniform framework, to allow
for easy and consistent comparison. Based on our findings and forthcoming
opportunities for improvements, we introduce two new methods. A straight-
forward sampling approach, Local Unimodal Sampling (LUS), that uniformly
samples from a decreasing area around a constantly updated peak in weight-
vector space. And a ranking based approach, implementing SVM-Rank, that
focusses on giving, besides the best translations, also its runner-ups a high score.
We empirically compare our own methods to existing methods and find that
LUS slightly, but significantly, outperforms the state-of-the-art MERT method
in a realistic setting with 14 features. We claim that this progress, the simplicity
of the radically di↵erent approach of the method obtaining this progress and the
clear overview of existing work are contributions to the field. Our SVM-Rank
showed no improvement over the-state-of-the-art within our experimental setup.
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Chapter 1

Introduction

With the growing abundance of information that is coming upon us since the
rise of the Internet and globalisation, many of us have become used to a huge
information intake. We are more and more capable of finding our way through
fast quantities of data. We do not so much posses knowledge, we know where to
look. Search engines come to our aid. One issue remains and surfaces more and
more. Not everything we might want to know is available in our own language1,
we will need translations of what we can not read. Given the enormous amounts
of text that needs translation we need this to be done automatically, by a machine;
we need Machine Translation (Hutchins, 2003). The information explosion forces
us to be aided by machines that produce at least rough translations. For the
English speaking part of the world this need might not be as clear as it is for
others; for others it can be a vital means of staying in contact with the rest of
the world. Very well demonstrated by automated translations of international
news-sources into Farsi during the rallies around the latest Iranian elections;
translations were not perfect but allowed Iranians to follow public opinion abroad.

The process of translating in an automated way has been studied extensively for
at least the past couple of decades and the research field made rapid progress. But
still the state-of-the-art can not compete with a human, professional, translator.
This work will not try to close that gap, but will study some aspects of the
shortcomings of current approaches of others and propose two approaches that
might not su↵er from these shortcomings. But above all, the aim of this work is
to provide insight into an important sub field of the statistical variant of machine
translation. This work will study parameter optimisation methods, which is
called tuning, in Statistical Machine Translation (SMT).

Current SMT systems, Phrase-Based SMT systems, use a log-linear model to
estimate the probability of translations of a sentence. Such a system prefers, and
returns, the most probable translation. This model is parametrized, and tuning
is the process of finding the optimal set of parameters, given some metric, for this
log-linear model. Some approaches exist, of which MERT is the most prominent.
We compare three existing ways of tuning and introduce 2 new approaches.
A straightforward sampling approach, Local Unimodal Sampling (LUS), that

1
It is shown by Gerrand (2007) that the use of English on the world wide web has increased,

but much less so than the use of other languages; more and more information appears in a

variety of languages.
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uniformly samples from a decreasing area around a constantly updated peak in
weight-vector space. And a ranking based approach, implementing SVM-Rank,
that focusses on giving, besides the best translations, also its runner ups a high
score.

1.1 Reading Guide

This first chapter and Chapter 3 (p. 10) will provide a high level introduction
into Machine Translation, and more specifically Statistical Machine Translation.
We will quickly dive into the problems related to tuning such a SMT system.
Anyone familiar with SMT can readily skip the following sections but should
briefly read Chapter 3 (p. 10) to become acquainted with the notation used, and
definitely section 3.4 (p. 19) stating the di�culties of the problem we address.
The end of this chapter, section 1.3 (p. 4), will state the research questions that
are to be answered in the remaining chapters. These research questions are
followed directly by section 1.4 (p. 5) that lists the contributions of this work.

The next chapter, Chapter 2 (p. 7), stands on its own and describes a variety of
approaches by others that tackle the same, or similar, issues we address in this
work.

Chapter 4 (p. 20) will introduce and describe three existing approaches to Tuning
in detail. The chapter is intended to be self-contained in the sense that it can
be read without reading referenced work.

Chapter 5 (p. 32) compares the three approaches described in the preceding
chapter on a theoretical basis. The findings of this comparison are used in
Chapter 6 (p. 39) to motivate two, to our knowledge, new ways of performing
the required optimisation. Together these chapters form heart of this thesis.

The before last Chapter 7 (p. 46) describes an empirical evaluation and compari-
son. We analyse where and why results agree or disagree with our theoretical
comparison and motivation to introduce our new methods. Conclusions are
drawn and described in Chapter 8 (p. 68).

1.2 Machine Translation

1.2.1 Rule Based Machine Translation

Early approaches to automatic translation took the route of transforming the
source language into some semantic representation; an interlingua. This inter-
lingua was, as the name suggests, completely language independent; it would
describe real-world concepts in some logic representation. This interlingual form
of the meaning of the source sentence could be transformed into any target
language. All transformations mentioned here would be directed by rules. This
approach has largely been abandoned since it turned out that it was impractical
for anything but some small fixed toy domains. The availability of both data
and faster computers led to the rise of a statistical approach instead.

2



1.2.2 Statistical Machine Translation

Already in the late forties of the previous century Weaver (1949) coined a
statistical approach to Machine Translation. Back then the approach never
really took o↵, due to both limiting factors in computing power and the lacking
availability of example data. Only in the nineties researchers at the IBM Thomas
J. Watson Research Center took up the old work (Brown et al., 1988, 1990,
1993). Since then the field of Statistical Machine Translation (SMT) became very
active. In the early years of this century, new and leading approaches included
Phrase-Based SMT (PBSMT) (Zens et al., 2002; Koehn et al., 2003; Och and
Ney, 2003). This thesis should be placed in that line of work.2

SMT systems, in essence, are based on the Noisy Channel Model, by Shannon
(1948), rewritten using the Bayes rule:

ê = argmax
e

p(e|f) = argmax
e

p(f |e)p(e) (1.1)

It states that the best translation ê (english) of a sentence f (foreign) is the
sentence e that maximises p(e|f).
Loosely speaking and without going into details, this approach allows us to have
a model that preserves meaning, p(f |e), separate from a model that controls the
quality of the english sentence, p(e). The first model is the translation model and
in a PBSMT system it is implemented using a so called phrase table consisting
of paired phrases and their probabilities estimated from a bilingual corpus3. The
second model is called the language model, and is generally implemented using
n-grams, whose probabilities are estimated using a monolingual corpus4 of the
target language.

A more general form of (1.1), that will allow us to have more than just the two
models mentioned —the translation model and the language model—, can be
derived as follows:

ê = argmax
e

p(e|f) = argmax
e

p(f |e)p(e) (1.2)

= argmax
e

Y

i

hi(e, f)
wi (1.3)

= argmax
e

X

i

log(hi(e, f)) ·wi (1.4)

= argmax
e

X

i

 i(e, f) ·wi (1.5)

= argmax
e

 (e, f) ·w (1.6)

Here, hi in (1.3) and (1.4) denotes a so-called feature with it’s corresponding
weight wi. So strictly speaking, h1(e, f) refers to p(f |e) and h2(e, f) to p(e).
This setup however allows for extensions by adding more models —now called
features— that can each capture other aspects of translation. Each feature is

2
In the remainder of our work, when we refer to SMT, we are actually referring to PBSMT.

3
Bilingual corpora, also called parallel corpora or simply bi-texts, are large bodies of

sentence by sentence translations.
4
A monolingual corpus is usually an even larger corpus than the bi-text, and consists of a

representative sample of the target language.

3



parametrized with weight wi as an exponent, if a feature was simply multiplied by
its weight, weights would be no longer specific to a feature due to commutativity
of multiplication.

In existing implementations of so-called decoders —systems that perform the
mentioned argmax search operation— such as Moses (Koehn et al., 2007), the
translation model alone uses by default already five features. Add to that a
feature for the language model and one for a reordering model (Zens and Ney,
2003), to name a few5.

For reasons of convenience in later chapters, we rewrite (1.1) even more, into the
log-linear form of (1.6)6, where  (e, f) denotes a vector consisting of log-scores
for features and where w is now a weight-vector.

As mentioned, we will end up with many hi’s and equally many wi’s that need
to be estimated, generally the number ranges from about 8 up to thousands and
even millions. The process of estimating the weight-vector is called parameter
optimisation, parameter tuning or just tuning, and is the most computationally
expensive part of training a SMT system. It is also the problem that is addressed
in this thesis.

The most frequently used method for doing this parameter tuning is Minimum
Error Rate Training (MERT) (Och, 2003), but more recently the Margin Infused
Relaxed Algorithm (MIRA) (Crammer and Singer, 2003) is used successfully and
also the more general-purpose optimisation algorithm Downhill Simplex Method
(Nelder and Mead, 1965) is used. These three methods will be described and
discussed in depth in Chapter 4 (p. 20) on existing approaches.

1.3 Research Questions

Now that the setting of tuning has been introduced briefly —the stage has been
set— we can turn to stating the research questions of this thesis. What follows
are the three questions this thesis evolves around. The preceding text, obviously
the remainder of this thesis and most explicitly the concluding Chapter 8 (p. 68)
are all dedicated to answering these questions thoroughly.

1. What factors of Tuning in Statistical Machine Translation make
it a hard problem? Is tuning, in the setting of SMT, not just another
optimisation problem? Numerical optimisation has been studied extensively
as a field in its own right. Is there really a need to reinvent the wheel
and come up with methods that specialise in optimising a SMT system?
The type of model that is optimised, a log-linear model, is not new and
definitely not considered among the most di�cult ones. That said, what
makes our problem stand out from the others, why does it deserve special
treatment? Or, and this would be a legitimate answer to this question; is
our optimisation problem not harder than other problems per sé, and does
it just allow for specialised algorithmic optimisations?

5
See Chapter 7 (p. 46) on experiments and particularly sections 7.1.1 (p. 46) and 7.1.4

(p. 48) on the specific features we used.
6
By abuse of notation, we leave out the transposition of the weight-vector in the dot product

in equation (1.6). Formally, it should have read:  (e, f) ·wT
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2. How do existing Tuning methods for Statistical Machine Trans-
lation compare? A variety of existing methods addressing tuning in the
SMT setting exist. Can they be fit into a single framework? If so, how
di↵erent are they really? What are the fundamental di↵erences, and do
empirical results agree with these theoretical di↵erences? Can we draw
conclusions from what we observe in experimental results in relation to the-
oretical aspects of methods; which aspects cause a method to outperform
others?

3. What factors lead to improvements in new Tuning methods for
Statistical Machine Translation? Answering question 2 will supply us
with aspects of existing methods that can be addressed to improve tuning.
To give ourselves a head-start here, we mention a single aspect of existing
methods that spiked our interest in investigating tuning in the first place.
Most approaches seem to focus on getting a single best translation on top,
is that enough? While it is desirable that a translation system only returns
a single translation for any given source sentence —and not multiple— it
might still be beneficial to, at the same time, try and optimise a system in
such a way that also the runner-ups to the best sentence are good ones.
This thought alone deserves investigation. However, other shortcomings
of existing methods should also be tackled. And this should be done not
just to outperform those methods, it should also serve as means to verify
our understanding of the problem and that those methods where indeed
lacking because of these shortcomings.

1.4 Contributions of This Work

We believe that it is helpful to explicitly state the contributions of this work to
the field. Not to show o↵ but rather to be crystal clear about where we claim to
have made progress.

For one, this work will set out by introducing a framework that fits all tuning
methods in this thesis. Furthermore, the author holds the strong believe that
this framework, given its simplicity, would fit any tuning method within the
SMT setting. Such a uniform way of describing a variety of approaches to the
same problem brings insight in where such an approach is actually di↵erent and
is therefore valuable.

We subject three existing approaches, that represent a broad range of possible
approaches to tuning, to this strict framework. A theoretical comparison,
facilitated by the uniformity of the framework, of these three existing methods
follows. This discussion shows the strength of the framework, by pointing out
weaknesses of the approaches.

Besides a clear description in words, we provide actual algorithms allowing a
reader to easily reproduce our work. These algorithms came forth while re-
implementing each method, and are therefore not just exercises. They have been
tested and are the blueprint of implementations that underlie all results in this
thesis.

A critique might be that what the above describes is only recasting work of
others in new words. While the author sees no harm in that, and believes that
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collecting and providing an overview of the field is a concrete contribution, we
also introduce, implement and compare two completely new approaches to tuning.
These two approaches are very di↵erent in nature from existing work and shed
new light on the field. Our sampling approach —Local Unimodal Sampling—
performs significantly better than the state-of-the-art approach in at least one
realistic setting with 14 features. If we gained no absolute improvement over
other methods, merely the simplicity and generality of our method should make
it preferable over any other more complicated special purpose algorithm that
performs just as well.

6



Chapter 2

Related Work

This short chapter describes the work of others that touches our work but that
we choose not to include beyond this description. We introduce overviews of
SMT, and tuning in particular, by other authors. We also describe a variety
of attempts on improving SMT performance with techniques related to tuning.
The individual existing tuning approaches —MERT, MIRA and Simplex— we
address in this work are treated in Chapter 4 (p. 20) because their in-depth
description forms an integral part of this thesis.

In their work, dating only a few months back, Arun et al. (2010) describe a
Minimum Bayes Risk (MBR) decoder that uses a Gibbs sampler. Their sampler
samples the space of possible translation, and not weight-vector space as our
sampler does. Although their experimental setup is not directly comparable,
their highest BLEU1 scores on Arabic to English MT05 are 0.45 where in this
work we achieve 0.53. Also, their improvements over standard MERT are not
big and they do not claim statistical significant improvements. They do point
out the low standard deviation, and thus stability of their method. We, although
calculated over fewer runs of the algorithm, report even lower standard deviations
using our LUS↵=1/100 method. Nonetheless, we do not wish to discard their work
at all, quite the opposite; their approach is appealing since they use an objective
function that can be di↵erentiated, making it possible to use the gradient for
optimisation.

In relatively recent work Hayashi et al. (2009) use Support Vector Machines, as
we will, within their tuning setting. We did not include their work, but recognise
it as being relevant. They show, on very di↵erent datasets and language pairs,
slight improvements when MERT is extended to maximise the margin —the
di↵erence in model-score— between references and wrong translations.

A related, to tuning, approach to improving performance of SMT systems is
Reranking. Shen et al. (2004) also have the decoder returning n-best lists. But
instead of using these lists to find the best weight-vector, they train a reranker on
their development set that stays in place. So, also when the system is deployed
on the test set, n-best lists need to be returned and reranked. Such an approach
obviously allows for more freedom in the model that is reranking the candidate
translations. It can use features beyond those used by the decoder, and it

1
See section 3.3.1 (p. 15), higher is better.
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does not have to stick to a log-linear form. However, the downside of such an
approach are the costs that come with returning n-best lists instead of single best
translations and performing the required post processing after that. Moreover,
Hasan and Ney (2009) show that incorporating models in the search process,
and thus eventually in the tuning process, yields better results.

Also Duh and Kirchho↵ (2008) worked on a reranking approach in their article
on BoostedMERT. They keep a distribution over the n-best list and iteratively
tune weight-vectors using MERT. The result is an assemble of MERT-rerankers
—weight-vectors—, that obtains a BLEU score improvement between 0.7 and 2.5
points over MERT. Their main argument however is that the log-linear model is
insu�cient to model the training data —our problem— su�ciently. They claim
that the training error for tuning is low, and that we are facing a modeling error
instead, that can not be overcome by improving tuning methods.

Macherey et al. (2008) propose a method to perform MERT tuning on all
translations in the search lattice as opposed to using an n-best list. This has
several implications: a) the error surface will still be piece-wise constant, but
the ‘pieces’ will be smaller; there are more candidate sentences that can top the
list.2 And b) the first iteration will much less over-fit any initial sample from
the candidate translations and c) weight-vectors found will be much less of an
approximation. The authors show much higher BLEU scores for their baseline
than in this work, but use a very di↵erent experimental setup. Gains for their
method are around +1 BLEU point over their baseline.

Foster and Kuhn (2009) investigate the stability of MERT. They report standard
deviations, similar to what we report in section 7.2.1 (p. 51), and propose ways
of overcoming these instabilities while improving performance. Although their
results seem promising, there solutions are computationally expensive.

In his recent work, Zaidan (2009) proposes a re-implementation of MERT that
also includes some minor improvements. For one, if a point of interest3 was
found for more than one sentence, the author takes that fact into consideration.
The main advantage of his e↵ort is the portability of his software regarding
decoder and metric.

Moore and Quirk (2008) investigate the e↵ect of random restarts in MERT. They
experiment with varying in the number of restarts, whether to restart at all and
with the number of iterations. In their conclusion they suggest only using 5
instead of 19 (or even 23) random restart, not waiting for convergence (cutting
o↵ after 7 iterations) and pruning the n-best list, even though they seem not to
have performed exactly that experiment, and they do not test whether tuning
these meta-parameters (the number of random restarts, the number of iterations)
on a separate dataset is possible. A very interesting aspect of their work is the
pruning of the n-best list; translation candidates that will never end up on top
anyway are pruned away, considerably speeding up the tuning process.

Cer et al. (2008) also explore randomisation in their optimisation algorithm,
which is a variation of MERT. As opposed to work in this thesis, they do not take
completely random weight-vectors, but rather take the direction in which they
are performing the MERT line minimisation randomly. Besides this, attempts
are made to make MERT more stable, less susceptible to local optima, by

2
For more of the piece-wise-constant nature of our objective function, see section 3.2 (p. 11).

3
See section 4.1 (p. 20) for an explanation of what points-of-interest are.

8



generalisation —or smoothing— techniques.

Lopez (2007) and Koehn (2008) both provide an overview of the state-of-the-art
in Phrase-Based SMT. Lopez (2007) does not focus on tuning much by spending
3 pages on MERT, where Koehn (2008) in his book dedicates 10 pages to the
subject, clearly explaining the workings of both MERT and the Downhill Simplex
Method.

Duh (2008) proposes a method for evaluation of multiple systems. Machine
learning techniques are used to predict human preference of one system over
another. Where we use Koehn (2004) to induce statistical significant improvement
of one system over another based on BLEU scores, Duh (2008) directly calculates
human preference by ranking the systems, skipping the BLEU score. While we
acknowledge that such an approach will lead to more reliable judgments, the
human annotated datasets make it prohibitively expensive.

9



Chapter 3

Considerations for a

Uniform Framework for

Tuning

In the literature many variations in notation and levels of abstraction are used to
describe tuning methods. This chapter aims at introducing, or at least defining,
a framework that will fit all methods described in this thesis. This framework
can then serve as a solid base for an analysis and comparison of the methods.
Care has been taken to not limit our framework to approaches described in this
thesis. It is as simple and general as it can be.

We will model the decoding and tuning setting largely following Cer et al. (2008),
making adjustments and additions where necessary.1

3.1 Decoding

Much details regarding the workings of the decoder, and thus much details of
SMT, are out of scope of this thesis. We are only concerned with setting the
parameters w of the log-linear model of the system, see (1.6). Beyond that,
decoding can be considered a black-box that performs a beam-search through all
possible translations given an input sentence f and these parameters w. Details
provided in the introduction in section 1.2.2 (p. 3) are su�cient for understanding
the workings of tuning. Here, the workings of a decoder are quickly revisited to
introduce some notation used in what follows, in section 3.2 (facing page), on
tuning.

Within the tuning setting, we typically have a selection of representative foreign
—source— sentences of which we have reference translations. Such a tuning- or
development-set usually consists of about 1000 or more foreign sentences, each
with 4 or 5 reference translation, created by 4 or 5 professional human translators.
Only few such data-sets are available2 since they are rather laborious and thus

1
As opposed to Cer et al. (2008), we left out any reference to derivations as it would

unnecessarily clutter the notation. Our work can be extended trivially to include them.
2
We use the NIST MTeval sets in this work, see section 7.1.5 (p. 48).
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expensive to produce.

Let us call the foreign side of a development set F, a batch of foreign input
sentences, f1, . . . , fk. For each sentence fi, its translation into the target language,
as produced by a decoder, is denoted by ei. The set of these translations, E, is
drawn from E . With E representing all possible strings the decoder can produce.
The tuples (ei, fi) are represented by a vector  , consisting of m feature values,
defined as:

 : E ⇥ F ! Rm (3.1)

Where F represents all possible input sentences our decoder can translate.

The dot-product of the vector resulting from (3.1) with the weight-vector w
gives the tuple (ei, fi) a real value; the model-score. The task of the decoder is
then to find for each fi the translation that maximises the model-score:

êi = argmax
e2E

 (e, f) ·w (3.2)

This formula is almost equivalent to (1.6), we just limited the translations to
translations that can actually be produced by the decoder. Note here that the
scale of the model-score and thus of the weight-vector will not change the result
of the argmax operation; w is scale invariant.

For an entire set of input sentences F, the sum of the individual model-scores is
maximised by a decoder:

Ew = argmax
E2Ek

 (E,F) ·w (3.3)

Where the aggregate feature vector is defined as the sum of the feature vectors
of the individual sentences in the batch:

 (E,F) =
kX

i=1

 (ei, fi) (3.4)

As mentioned before, for our purposes it is su�cient to view the decoder as a
system that performs (3.3) and produces Ew provided with input sentences F
and weight-vector w; Ew are the translations of F given w.

It should be clear by now that w is not varied for di↵erent source sentences, w
is a parameter of the system and should do well on average.

3.2 Tuning

The task of tuning then, is to find that w that gives the best translations.
Thus we need some way to asses the quality of translations. And we will need
an automated means of doing so given the large amount of di↵erent w’s, and
thus translations, we need to evaluate; an automated evaluation metric is a
requirement to even start thinking about tuning. See section 3.3 (p. 15) on
some metrics. We will use the Bilingual Evaluation Understudy metric (BLEU)
(Papineni et al., 2001) as our metric for reasons described there. Here it is enough
to assume that BLEU is a function that takes a set of candidate translation,
produced by our decoder, and returns a real value in [0, 1], denoting how good

11



Figure 3.1: The optimisation surface —BLEU— for a SMT system. The distortion
weight is being varied while all other weights are kept constant. The BLEU score is
measured on our development set, MT04. We follow Koehn (2008) by zooming in
on the area around the peak. Both graphs show a rugged surface. Also note, in the
lay-in, the piece-wise-constant nature of our objective function; small perturbations
in the distortion weight often do not lead to changes in BLEU. See also Appendix A
(p. 76) for an overview of this type of graphs.

the translations are; a score of 0 is as bad as it can get, 1 is generally unreachable
but good3.

Bleu : En ! [0, 1] (3.5)

With the introduction of BLEU we are given an objective function on which we
can optimise. Tuning can thus be defined as finding the optimal weight-vector
w⇤; the weight-vector that leads to the highest BLEU score.

w⇤ = argmax
w

Bleu(Ew) (3.6)

This formula, and specifically the argmax operation is central in this thesis.

Tuning seems like a straight forward task. A simple approach would be to apply
hill-climbing techniques; vary w such that BLEU increases with every change.
However, if we examine the surface we are optimising it becomes clear that if we
do so, we might end up in local optimum, see Figure 3.1.

Moreover, the problem is even worse. Computing the derivative of the function
we are optimising, to examine the gradient, is impossible. We are dealing with so
called black-box optimisation (Pedersen, 2010, p. 4); given a candidate solution
—a weight-vector— our black box produces some measure of fitness: a BLEU
score. And that is all we have for guiding us to the optimal solution.

Not only that, the optimisation surface is piece-wise-constant: minor perturba-
tions in w will likely not cause a shift in the best translations, and thus not in the
BLEU score assigned to that w. See Figure 3.1, and in particular the lay-in, for
an illustration of the piece-wise-constant characteristics of our objective function.

3
For the unfamiliar reader, as a rule of thumb, it very much depends on the language

though, BLEU scores of 0.3 and above are assigned to sets of translations that are readable in

the broadest sense of the word readable.
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It seems that what is left is a method of trial and error: choose a w, run
the decoder to obtain Ew, asses this using (3.5) and try the next w to run
the decoder with, etc. Such an approach is called Direct Search. However,
this approach is infeasible for many reasons. For one, running a decoder is
computationally expensive. Moreover, Moses (the decoder of our choice) requires
a restart whenever weights are changed due to pruning applied to the phrase-
table on basis of these weights. But also, the evaluation our fitness function
—BLEU— which is holistic —defined on the whole corpus—, is expensive. And
on top of that it would be impossible to evaluate all values in weight-vector
space, it being a real valued multi-dimensional space.

Despite all these di�culties, it will be necessary to have a reasonable fast
algorithm to perform tuning. Tuning is nowadays in integral part of a SMT
system, and tuning is performed by researchers and developers to test progress
of small adjustment to any part of the pipeline. Therefore, a fast turn-around is
required; it is unacceptable to have the whole cycle running for more than a day,
preferably much less.

A solution, that avoids reruns of the decoder for every w is to let the decoder
return n-best4 lists instead of just the single best translation. These n-best trans-
lations e1i , . . . , e

n
i should be accompanied by  (eji , fi) for each eji . A simplified

example of such an n-best list is shown in Table 3.1 (next page).5

Using such a list it becomes feasible to perform an approximation of (3.2) and
thus (3.3) without running the decoder. For each w that needs to be evaluated,
the model-score for each eji is calculated, the sentences are re-ordered according
to this score and the new top translations for all fi are used to calculate the
new BLEU-score. The result of this are approximations of (3.2) because n-best
lists typically can not enlist the full search space Ek. Therefore, any set of best
translations, found by changing the value of w, that is obtained from these
n-best lists is an approximate set of best translations, Ẽw. It is approximate
in the sense that the decoder itself might have returned a di↵erent set of best
translations were it run given the same w.

It is now possible to do a search for the (approximate) optimal weight-vector
w⇤ without running the decoder:

w⇤ = argmax
w

Bleu(Ẽw) (3.7)

Note that this is similar to, but an approximation of (3.6); we optimise w against
a BLEU-score on Ẽw rather than Ew.

As mentioned, an issue still remains. The n-best lists are obtained using an
(initial) weight-vector w, and this parameter actually determines what is in that
list. So we are not only optimising a landscape with many local optima, we
are also not able to fully trust the objective function, it is limited by whatever
value of w was used to obtain the n-best list. In fact, a value for w might
be judged with a low BLEU score simply because the one perfect candidate
translation that would have been on top with that weight-vector was beyond the
nth translation when the n-best list was retrieved, or vice versa. The objective

4
The word best might be a source of confusion. It refers to what the decoder ‘thinks’ is

best: the top n sentences according to the model-score, so not necessarily and usually the

highest BLEU score.
5
As can be read in our experiments Chapter 7 (p. 46), we will usually set n = 500.
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Candidate Translations
 (ej

i , fi)  (ej
i , fi) ·w

d l w t-1

e1
i dutchman jaap de hoop sche↵er as-

sumed his duties of nato
0.0 -57.79 -10.0 -17.42 -85.21

e2
i the dutch jaap de hoop sche↵er , as-

sumed his duties at the head of nato
0.0 -68.1 -15.0 -9.94 -93.04

e3
i dutchman jaap de hoop sche↵er tops

nato assumed his functions
-8.0 -66.19 -10.0 -9.02 -93.21

e4
i dutchman jaap de hoop sche↵er , as-

sumed his post at the head of the
north atlantic treaty organization

0.0 -60.93 -18.0 -14.7 -93.63

e5
i dutch jaap de hoop sche↵er , as-

sumed his functions on top of nato
0.0 -69.88 -13.0 -12.3 -95.18

e6
i dutch jaap de hoop sche↵er assumed

his functions on top of nato
0.0 -70.08 -12.0 -13.8 -95.88

e7
i dutchman jaap de hoop sche↵er on

ras nato undertakes function
-8.0 -73.1 -10.0 -11.92 -103.02

e8
i the dutch jaap de hoop sche↵er will

undertake its tasks on the nato
0.0 -73.44 -13.0 -18.19 -104.63

fi dutchman jaap de hoop sche↵er takes over post at top of atlantic organization

Table 3.1: Example of an n-best translation list (with n = 8) for the arabic source
phrase shown below, as generated by the decoder. The model-score is calculated
using w = [1.0 1.0 1.0 1.0]. With these weights, sentence e1

i would have been
returned. Note that in our default setting 4 additional translation model weights
are present, see section 7.1.1 (p. 46).

function —BLEU— becomes unreliable because of our decision to use n-best
list instead of re-running the decoder each time we change w. It is therefore
common practice to iteratively run the decoder with new found w’s —found
with our optimisation algorithm— and perform (3.7) until the n-best list or w⇤

does not change significantly anymore, as illustrated in Figure 3.2 (next page).
Every next n-best list is merged with the previous in order to get a sample of
the search space Ek that is as accurate as possible.

We can now, in the next sections, turn to the implementation of the argmax
operator from equation (3.7). This is not as simple as it might seem, we cannot
exhaustively search the space of possible w, it is an m-dimensional space over
real numbers.

In general, a tuning algorithm is of the form listed in Algorithm 1 (p. 16).

The function n-Best(w,F) is a call to the decoder, where the decoder is expected
to return a set of n-best translation given a batch of foreign sentences F and a
weight-vector w.

Optimise() can be replaced by a specific implementation of a tuning algorithm,
such as OptimiseMERT() in Algorithm 2 (p. 24), OptimiseMIRA() in Algo-
rithm 3 (p. 28), OptimiseSimplex() in Algorithm 4 (p. 31), OptimiseLus↵()
in Algorithm 5 (p. 42) or OptimiseRank() in Algorithm 6 (p. 45).
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Figure 3.2: Iterative parameter tuning, using n-best lists, following Koehn (2008).
Convergence is reached when either w or the n-best does not change (significantly)
anymore.

3.3 Evaluation Metrics

Over the years many metrics have been devised to measure translation quality.
Since an automated metric, one that does not involve human assessment, is
essential to tuning we describe a few in this section. Our selection includes
BLEU, NIST, METEOR, WER, PER and TER. We will however follow suit
in our decision of which one to choose and stick with the BLEU score. We will
therefore discuss this metric first and in much more depth.

3.3.1 BLEU

The Bilingual Evaluation Understudy (BLEU), (Papineni et al., 2001) is the
most often used metric for evaluation Machine Translation performance since it
was found to correlate well with human judgment of how good translations are.
Recently, Cer et al. (2010) reconfirmed this.

The BLEU metric measures the correspondence between a translation of the
system, a candidate translation, and multiple human reference translations of
the same sentence. In this work, there will always be 4 or 5 reference translations
per sentence.6

This correspondence between candidate and references is defined upon the
precision of n-grams in the candidate translation with respect to the references.
For an example see Table 3.2 (next page). For n = 1 . . . 4 the number of n-grams
with a match in one of the references are counted and divided by the total
number of n-grams to get the n-gram precision Pn.

6
More on the specific datasets that were used can be found in section 7.1.5 (p. 48).
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Algorithm 1 Tuning(F,R,w)

Require: F, a set of source sentences, f1, . . . , fk
Require: R, a set of corresponding target reference sentences
Require: An initial weight-vector w
1: En  {}
2: repeat
3: w0  w
4: En0  En

5: En  En [ n-Best(w,F)
6: w Optimise(w,En

,R)
7: until kw �w0k < ✏ or En ⇡ En0

8: return w

n the dutch jaap de hoop sche↵er , assumed his duties at the head of nato Pn

1
9
15 = 0.60

2
6
14 = 0.43

3
3
13 = 0.23

4
1
12 = 0.08

Table 3.2: Precision calculation for BLEU with a single reference:
dutchman jaap de hoop sche↵er takes over his duties as head of nato.
Matches for this candidate with the reference sentence are shown as lines. The
number of matches, lines, is divided by the total number n-grams for each n to
arrive at Pn.

There is a problem though, with these counts. It is best illustrated with a
candidate sentence like: his his his his his his his. When using the same
reference sentence, from Table 3.2, this sentence will get a very high precision
score for n = 1: P1 = 7

7 = 1. Obviously this is not a desired property of the
measure. Which is why the notion of clipped counts was introduced: counts for
an n-gram are clipped with the maximum number of times the n-gram occurs
in any reference sentence. The precision would be corrected to P1 = 1

7 = 0.14
because the 1-gram his only occurred once in the reference translation.

To calculate BLEU, the product of these clipped n-gram precisions is taken:

Bleun = BP ·
nY

i=1

Pn (3.8)

And penalised with a brevity penalty, BP , where lengths are calculated in
number of words:

BP = min

✓
1,

output-lenght

reference-length

◆
(3.9)

16



This brevity penalty is necessary because the measure is a precision measure;
otherwise a system could perform relatively well by always returning small or
even single word sentences, consisting of a very common word; a ‘sentence’ like
his. Such a small sentence would in the example render a brevity penalty of
BP = min(1, 1

15 ) ⇡ 0.067.

In the case of multiple references, which is the common case, some variations in
which length to take exist. More recent implementations of the BLEU score use
the length of the reference sentence that is nearest in length to the candidate
translation, and in case of a tie, the shortest. Since we use the standard NIST
mteval-v11b.pl script in this work for final evaluation of each system, we match
what they do there in our objective function. Our brevity penalty is calculated
using the length of the shortest reference translation.

Using the before mentioned example, the result would be as follows for some n.

Bleu1 = min

✓
1,

15

13

◆
· 0.6 = 0.6

Bleu2 = min

✓
1,

15

13

◆
· 0.6 · 0.43 = 0.26

Bleu3 = min

✓
1,

15

13

◆
· 0.6 · 0.43 · 0.23 = 0.06

Bleu4 = min

✓
1,

15

13

◆
· 0.6 · 0.43 · 0.23 · 0.08 = 0.005

Bleu5 = min

✓
1,

15

13

◆
· 0.6 · 0.43 · 0.23 · 0.08 · 0 = 0

It is clear from these examples that for larger n the scores drop. And with a
single reference this metric is quite unstable; as soon as for a certain n not a
single n-gram appears in the reference, the whole measure goes to 0.7 Papineni
et al. (2001) showed that Bleu4 gave the most satisfactory results, so when we
refer to BLEU, we mean Bleu4.

The above, the instability, is a reason why BLEU is usually calculated on a
whole corpus instead of just on a single sentence. And op top of that using
multiple references per sentence, where the references should ideally be as varied
as possible. BLEU can only be expected to correlate with human judgment when
averaged over many sentences and if the goal is comparing systems that are
treated the same, with the same test sets (Papineni et al., 2001, p. 313). This
holistic property of BLEU is also one of its downsides; it means that we can not
reliably calculate the BLEU score of an individual sentence, it is always done in
the context of a corpus. Some variations on BLEU, that aim at overcoming this
limitation, exist and are discussed in 5.3.1 (p. 36).

7
Note that mentioning Bleu5 here only serves as an illustration of this point, it will not be

used anywhere else in this thesis.
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3.3.2 Other Evaluation Metrics

NIST

A metric of the U.S. National Institute of Standards and Technology, the metric
is called NIST after the institutes name, is very similar to BLEU (Doddington,
2002). The main di↵erence is that n-grams are weighted with their inverse
document frequency, which seems a reasonable idea. Although one could argue
that getting the function words right, those with low inverse document frequency,
is also a rather important part of SMT. And maybe even more di�cult than
n-grams with high inverse document frequencies that will probably occur only
in very specific contexts, leaving less room for error anyway.

Just as BLEU, NIST performs well according to human judges (Cer et al., 2010).
The reason we prefer BLEU over NIST is that BLEU is used more frequently,
computationally cheaper to use in evaluation and slightly easier to implement.

METEOR

The Metric for Evaluation of Translation with Explicit ORdering (METEOR)
(Banerjee and Lavie, 2005) does some word alignment by itself. It aligns word in
a candidate translation with words in reference sentences and bases an F-measure
on the recall and precision of aligned words. This seems a rather expensive way
of performing evaluation. The method is not adopted widely.

WER

Word Error Rate (WER) (Niessen et al., 2000) is a metric that was introduced to
evaluate Automatic Speech Recognition systems, but has been used to evaluate
SMT systems as well. The metric is based on a Levenshtein distance between
words in the candidate translation and a reference. In fact, BLEU was designed
with this metric in mind (Papineni et al., 2001, p. 311).

PER

Position-independent word Error Rate (PER) was introduced by Och (2002,
p. 22) to overcome the strict word-order requirement of WER. In PER, words
without a match are counted as substitution errors. Shorter translations are
punished with deletion errors, long translations with insertion errors.

TER

The Translation Edit Rate (TER) (Snover et al., 2006) is a metric that uses
the number of edits of the candidate translation needed to obtain a reference
translation. The edits are deletion, insertion, and substitution of words, like
WER. And besides that, swaps of consecutive sequences of words, of n-grams,
are allowed.
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3.4 Summary of Di�culties in Tuning

In the above sections 3.2 (p. 11) and 3.3 (p. 15) we have detailed many reasons
for deeming our optimisation problem a di�cult one. Here we reiterate our
considerations in a concise manner.

Non di↵erential objective function
Optimisation techniques cannot follow a gradient.

Piece-wise constant objective
Even evaluating two nearby points in weight-vector space may not provide
us with a gradient.

Infinite number of possible parameters
If evaluation of a weight-vector were cheap, it would not be possible to try
all points in weight-vector space, given the infinite size of a real valued
multi-dimensional space.

Expensive evaluation of holistic BLEU
We have to restrict the total number of evaluations. The BLEU metric
is defined on a corpus instead of sentences and thus computationally
expensive.

Expensive to run a decoder
Ideal evaluation of w, using a decoder, needs to be approximated by
reordering an n-best list since running the decoder for each candidate w is
prohibitively expensive.

Unreliable evaluation since we use n-best list approximations
This approximation renders our objective function unreliable. And forces
us to repeat the whole process.

Run-time is an issue
As tuning is part of the SMT pipeline. For research and development
purposes, on any part of SMT, it is a necessity to have a fast turn-around
time.

All these di�culties are to be overcome by a successful approach to tuning. In
the next chapter we will reformulate and discuss existing approaches to gain
insight in how this can be done and where opportunities for improvement can
be found.
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Chapter 4

Casting Existing Tuning

Approaches in a Uniform

Framework

This chapter gives an overview of existing approaches to tuning within the setting
of SMT. It also strives to place this work within the framework from Chapter 3
(p. 10). By standardising a setting for existing methods, a comparison comes
forth naturally. The placement of existing methods within this framework should
be considered a major contribution of this work to the field, as such a comparison
does not yet exist.

We have chosen to discuss three existing methods: Minimum Error Rate Training
(MERT) in section 4.1, Margin Infused Relaxed Algorithm (MIRA) in section 4.2
(p. 23) and Simplex in section 4.3 (p. 27). MERT is by far the most commonly
used of these three, and comes distributed in various implementations with
commonly used decoders like Moses and Joshua. MIRA has recently also been
used. Simplex has not been heard of as much within the SMT literature until
recently (Koehn, 2008; Macherey et al., 2008; Hasan and Ney, 2009; Zhao and
Chen, 2009).

4.1 Minimum Error Rate Training

What follows is a description of MERT, mainly inspired by Och (2003); Cer
et al. (2008); Koehn (2008). In this section, MERT is reformulated to fit into
the framework and described in algorithmic form.

As any tuning algorithm in this thesis, MERT is initialised as follows: select F,
a batch of foreign input sentences, f1, . . . , fk, choose an initial weight-vector w
and obtain an n-best list e1i , . . . , e

n
i from the decoder using w.

Then the iterative part of the algorithm starts, where in the first run the starting
point is the initial weight-vector w and in later iterations this will be the best
weight-vector from the previous iteration. After each iteration, the decoder is
run again to obtain new n-best lists that are merged with existing ones. Besides
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this single starting point, MERT typically uses a number of additional random
points in vector space to avoid poor local optima (Lopez, 2007). These random
points are not completely random, but within fixed ranges1. The iterations stop
if there are no changes in the weight-vector, or if there are no new translations
in the n-best list.

Technically, MERT is minimising an error, the error metric in our case is 1 minus
BLEU; ` = 1� Bleu. So the search that MERT is performing is:

w⇤ = argmin
w

`(Ẽw) (4.1)

Now each of the starting points —each random weight-vector— mentioned before
is in turn taken as a starting point for this search.

As mentioned in the previous section, the error function that is being optimised
is piecewise-constant; that is `(Ẽw) mostly does not change with changes in
w, simply because a small change in w likely does not influence the model-
score enough to prefer another candidate (in the n-best list) as the single best
translation.

In parameter optimisation this is often considered a problem; it makes finding a
gradient very di�cult. However, MERT exploits this fact using Powell’s method
(Powell, 1964) by first finding the points of interest; the points where the loss
does change. These points are the points where the single best translations
changes and thus the BLEU score, and the loss, changes. This greatly reduces
the number of points in weight-vector space that we have to consider; from an
infinite number of points to typically a few thousand points.

Powell’s method starts with a single point in weight-vector space and then
performs an optimisation along each individual dimension of this vector. In the
extremely simplified case of a two dimensional space this search has (Koehn,
2008) and can be described as finding the highest point in a hilly city with a grid
of streets, like San Francisco. We start along a certain street. Find its highest
point and continue along the cross-street. Also in this cross-street we find the
highest point. Obviously, we are not guaranteed to actually find the highest
point, and whether we do so will also depend on our starting position. But
despite these simplifications and limitations, examining a single ’street’ —a single
dimension— in weight-vector space is still a hard task since the same problems
of an infinite number of points along this dimension and the piece-wise character
still exist. We will need to find the points of interest along each dimension.

Recall Equation 1.5 (p. 3) that models our way of finding a best translation
using features  i and weights wi

ê = argmax
e

X

i

 i(e, f) ·wi (4.2)

Now we are interested in finding the points along a single dimension of w where
our best translation changes. Let us call this specific dimension var, its weight
is then wvar and its feature value is  var.

We will keep all other dimensions, i 6= var, fixed while we are looking at var, so

1
We use 23 additional weight-vectors, to make optimal use of the 8-core architecture of the

machines used. See section 7.1.1 (p. 46) for the ranges we used.
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Figure 4.1: An illustration of our method to find points of interest. For an n-best
list with n = 8 we get 3 points of interest along the t-1 dimension: -0.23, -0.115
and 0.6. The used sentences and the feature values are in Table 4.1 (next page)

we can define a portion of the model-score as fixed for a certain e

b(e) =
X

i 6=var

 i(e, f) ·wi (4.3)

This reduces (4.2) to:

ê = argmax
e

 var(e, f) ·wvar + b(e) (4.4)

Each candidate translation e in our n-best list is now represented by a line:
 var(e, f) ·wvar + b(e). We can plot these lines for all candidates in an n-best
list, as done in Figure 4.1. If we do so, we see that at any given point along the
wvar axis a single translation has the highest model-score. We can analytically
work out where these best translations switch, it happens at a specific number of
intersections of the before mentioned lines. In the figure, the vertical dotted lines
denote the points of interest for this specific sentence along the t-1 dimension.

For each dimension the union of all points of interest over all sentences is taken.
Each of these points is evaluated using BLEU. In general, the point with the
highest BLEU score is taken as the optimal point for that dimension. However,
some variations exist, Cer et al. (2008) take also the neighbouring points along
each dimension of interest into account when optimising: either the average or
the lowest BLEU score of the point in question and its two neighbours is taken
into consideration.
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Candidate Translations d l w t-1 t-2 t-3 t-4 t-5

1 dutchman jaap de hoop

sche↵er , will take o�ce at

the head of the north at-

lantic treaty organization

0,00 -55,88 -18,00 -20,05 -33,39 -22,54 -41,44 8,00

2 dutchman jaap de hoop

sche↵er will take o�ce on the

nato

0,00 -54,30 -11,00 -25,87 -30,87 -15,55 -19,06 8,00

3 dutchman jaap de hoop

sche↵er , will take o�ce at

the head of nato ’s

0,00 -56,38 -15,00 -20,02 -30,21 -21,08 -29,99 7,00

4 dutchman jaap de hoop

sche↵er , assumed his duties

at the head of the nato

0,00 -64,88 -15,00 -9,07 -26,39 -18,67 -28,91 8,00

5 dutchman jaap de hoop

sche↵er assumed his post at

the head of the nato

0,00 -63,55 -14,00 -11,68 -27,50 -15,62 -27,05 8,00

6 dutchman jaap de hoop

sche↵er , assumed duties at

the head of nato

0,00 -62,02 -13,00 -13,87 -25,81 -15,59 -26,27 8,00

7 dutchman jaap de hoop

sche↵er will function at the

head of nato

0,00 -57,66 -12,00 -20,22 -28,60 -14,89 -23,75 8,00

8 dutchman jaap de hoop

sche↵er take over his duties

at the head of nato

0,00 -64,05 -14,00 -9,21 -28,91 -13,50 -28,33 6,00

Table 4.1: A small sample from an n-best list, these sentences are used in the example
shown in Figure 4.1 (facing page).

For MERT in a more algorithmic for see Algorithm 2 (next page). The algorithm
is a function, that can be called by Algorithm 1 (p. 16). It expects, as any of our
tuning algorithms, an initial weight-vector —which, in later iterations, can be
the best of a previous iteration—, a merged n-best list —the union of n-best lists
of all previous iterations— and a set of reference translations, which is merely
used to calculate a BLEU score. A few notes on the used notation follow. On
line 3, the call  zeros(m) returns a vector of length m consisting of just zeros.
The next line sets one element in that vector to 1. Any bold printed variable in
the algorithm denotes either an indexable array or a vector. The first is always
indexed with super- or sub-script the latter is not indexed.

4.2 Margin Infused Relaxed Algorithm

The more recent optimisation algorithm Margin Infused Relaxed Algorithm
(MIRA) (Crammer and Singer, 2003; Crammer et al., 2006), can also be applied
to tuning in SMT (Chiang et al., 2008, 2009; Watanabe et al., 2007a,b). MIRA
is an on-line learning method; it updates the weight-vector on the fly as training
examples, candidate translation pairs in this case, come in one by one. The way
the updates are conducted is crucial and is the heart of the algorithm. Earlier
steps just serve as a means of making the algorithm computationally feasible.
It is attractive to use MIRA because its updates to the weight-vector are in
proportion to the loss incurred by misclassifying a pair of candidate translations.
In other words, MIRA adapts a weight-vector based on how far o↵ we are
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Algorithm 2 OptimiseMERT(w,En
,R)

Require: w a starting point in weight-vector space
Require: En an n-best list e11, . . . , e

n
1 , . . . , e

1
k, . . . , e

n
k

Require: R corresponding reference translations
1: m |w|
2: for l 1 to m do
3: d zeros(m)
4: dl  1
5: T  {}
6: for i 1 to k do
7: for j  1 to n do
8: mj

i   (eji , fi) · d
9: bj

i   (eji , fi) ·w
10: t 0
11: j

⇤
t  argmax1j<n m

j
i

12: repeat

13: j
⇤
t+1  argmin1j<n max

✓
0,

b
j⇤t
i �bj

i

mj
i�m

j⇤t
i

◆

14: intercept max

✓
0,

b
j⇤t
i �b

j⇤t+1
i

m
j⇤t+1
i �m

j⇤t
i

◆

15: t t+ 1
16: if intercept > 0 then
17: T  T [ {intercept}
18: until intercept = 0
19: bleumax 0
20: t

⇤  ✏

21: for t 2 sort(T) do
22: w̃ w + (t� ✏) · d
23: if Bleu(Ẽw̃,R) > bleumax then
24: t

⇤  t

25: bleumax Bleu(Ẽw̃,R)
26: w w + (t⇤ � ✏) · d
27: return w
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Figure 4.2: Scatter plot of 10-best unique translations of a single sentence obtained
by using various values of µ in equation (4.5) (taken from Chiang et al. (2008))

—expressed in feature-vector di↵erence— for a pair of translations and how much
this costs —expressed in sentence BLEU di↵erence— to be that far o↵.

Again as with MERT and any algorithm in this thesis, we need F, a batch of
foreign input sentences, f1, . . . , fk. Also, we have to choose an initial weight-vector
w. We then iteratively do the following:

1. To limit the number of training examples used in Step 2 we iterate through
the development set, so for each fi do the following.

(a) Translate fi to obtain an n-best lists e1i , . . . , e
n
i from the decoder using

w and merge these with existing, if any, n-best lists for this fi.

(b) Keep from this merged list only those translations e1i , . . . , e
l
i that are

the 10-best (per µ) according to:

ei = argmax
ej
i

Bleu(eji )� µ(Bleu(eji )� (e
j
i , fi) ·w) (4.5)

For µ = 0.5, µ = 1 and µ =1, see Figure 4.2.

That is, for each source sentence we only keep a representative sample,
consisting of maximum 30 translations, of the n-best list. Some are
chosen because of their BLEU score, some due to their model-score,  ,
and some on the basis of a combination of the BLEU and model-score.

(c) Select a single oracle translation e⇤i by taking the single best transla-
tion according to (4.5) with µ = 0.5. The oracle translation is, or is
supposed to be, the best translation the decoder could produce using
this w. Other ways of choosing this oracle translation exist, includ-
ing methods of forcing the decoder to generate one of the reference
translations. Here we follow Chiang et al. (2008).

(d) For each eji in our sample, we pre-compute the di↵erence in feature
vector to our oracle

� j
i =  (e

⇤
i , fi)� (e

j
i , fi) (4.6)

The dot-product of � j
i with a weight-vector w is called the margin,

the namesake of this algorithm.
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(e) We also pre-compute the loss, `, for each eji in our sample:

`
j
i = Bleu(e⇤i )� Bleu(eji ) (4.7)

The loss signifies what harm would be incurred by preferring a candi-
date translation eji over the oracle e⇤i .

There is a problem with the use of BLEU. BLEU was defined on a
corpus level, not on sentence level, see section 3.3.1 (p. 15). Again, we
follow Chiang et al. (2008) and define BLEU on a pseudo-document:
a moving average over previously translated sentences. This pseudo-
document serves as a corpus on which BLEU is defined.

2. Step 1 left us with a limited number of translation candidates; a maximum
of 30i. We can now start updating w. Just like Chiang et al. (2008), we
take the objective —in (4.8)— as is done by (Crammer and Singer, 2003)
in their original article. So, our objective is di↵erent from what Watanabe
et al. (2007a,b) do.

w = argmin
w0

1

2
kw0 �wk2
| {z }
w0 near w

+C

kX

i=1

max
1jl

(`ji �� 
j
i ·w

0
| {z }
margin

| {z }
Hinge loss

) (4.8)

The update rule forces w0 to stay near w, to keep a new weight-vector close
to the previous one and thereby retain information learned in previous
iterations. On the other hand, we prefer a w0 that scores our oracle e⇤i
higher than each candidate translation eji with a margin at least as large
as the loss. In other words: we prefer a w0 that minimises the maximum
Hinge loss it incurs while staying close to w.

The variable C defines the size of the weight-vector update, it is the learning
rate. We set C = 0.01 following Chiang et al. (2008, 2009), and verified
this setting on a separate dataset2.

Obviously, we can still not simply enumerate all w0 to find the one that
minimises (4.8), just as in section 3.2 (p. 11). Instead, a variant of Sequen-
tial Minimal Optimisation by Platt (1998), that solves our constrained
objective, is used. So, instead of attempting to perform (4.8) directly, we
approximate it by the following, online, procedure:

(a) For each i and each j with 1  j  l, initialise a Lagrange multiplier
a
j
i as follows:

a
j
i =

(
C if eji = e⇤i
0 otherwise

(4.9)

Only those Lagrange multipliers associated with a oracle get a value
other then 0, and only those will play a role at first.

(b) Make a copy of current weight-vector, so we can see whether we made
progress: w0  w

2
This was done on MT02, LDC2003T18.
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(c) Then, repeatedly until w0 does not change anymore, do the following:
for each i and each pair of j and j

0, with 1  j  l:

w0  w0 + � · (� j
i �� 

j0

i ) (4.10)

a
j
i  a

j
i + � (4.11)

a
j0

i  a
j0

i � � (4.12)

with

� = max

 
�aji ,min

 
a
j0

i ,
(`ji � `

j0

i )� (� j
i ��i j0

i ) ·w0

k� j
i �� 

j0

i k2

!!

(4.13)
At first, w0 only changes when an oracle translation is involved in the

pair, in the case that ej
0

i = e⇤i . In following iterations also other pairs
start influencing the weight-vector.

3. The algorithm terminates, Step 1 and Step 2 are not performed anymore,
on the following condition: kw0 � wk < ✏. If the weight-vector did not
change significantly, we do not expect any new translations to come up in
a run of our decoder. And thus a new run of the algorithm will not result
in any progress.

4. If, on the other hand, there was a change in the weight-vector, we continue
with the new one, thus: w w0

In even more algorithmic form MIRA looks like Algorithm 3 (following page).
Notation related issues are as described briefly in section 4.1 (p. 20).

4.3 Downhill Simplex Method

The Downhill Simplex Method (Nelder and Mead, 1965) —also called Nelder-
Mead method, amoeba method or in this work usually just Simplex— is a general
and often used optimisation algorithm, applied to problems where the gradient
is unknown, like ours. What follows below is following Koehn (2008); Press et al.
(2007), and adjusted to fit into the framework presented in Chapter 3 (p. 10).

The method is called after the geometrical figure simplex. A simplex is a
generalisation of a triangle into more dimensions: in m dimensions, a simplex
consists of m+ 1 points and all connecting vertex.

The Downhill Simplex Method consist of transforming a simplex in weight-vector
space. These transformations, or reflections, are designed to allow the initial
simplex to find its way down the error surface. The error surface is again 1�Bleu,
corpus BLEU that is. Maybe the most appealing thing about Simplex is the fact
that it can be described in geometrical terms.

The reasons for applying the simplex algorithm to tuning are a) the problem
description it was developed for fits that of tuning; b) it is simple, almost trivial,
to implement; and c) simplex can work with a holistic metric, like BLEU.

1. The initial simplex starts with m+1 random points in weight-vector space
at the first iteration, or with m random points and the best point from
the previous iteration in later iterations.

27



Algorithm 3 OptimiseMIRA(w,En
,R)

Require: w a starting point in weight-vector space
Require: En an n-best list e11, . . . , e

n
1 , . . . , e

1
k, . . . , e

n
k

Require: R corresponding reference translations
1: for i 1 to k do
2: Oi  arg10maxej

i
 (eji , fi) ·w

3: Oi  O [ arg10maxej
i
Bleu(eji ,R) + (eji , fi) ·w

4: Oi  O [ arg10maxej
i
�Bleu(eji ,R) + (eji , fi) ·w

5: e⇤i  argmax1
ej
i

Bleu(eji ,R) + (eji , fi) ·w

6: for each eji 2 Oi do
7: � j

i   (e⇤i , fi)� (e
j
i , fi)

8: `
j
i  Bleu(e⇤i ,R)� Bleu(eji ,R)

9: a
j
i  

(
C if eji = e⇤i
0 else

10: w0  w
11: repeat
12: w w0

13: for i 1 to k do
14: for each eji 2 Oi do

15: for each ej
0

i 2 Oi do

16: � = max

✓
�aji ,min

✓
a
j0

i ,
(`ji�`j

0
i )�(� j

i��i j0
i )·w0

k� j
i�� 

j0
i k2

◆◆

17: w0  w0 + � · (� j
i �� 

j0

i )
18: a

j
i  a

j
i + �

19: a
j0

i  a
j0

i � �

20: until kw0 �wk < ✏

21: return w0
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2. Then, the simplex is being transformed until convergence. Convergence
here means that the simplex becomes very small; that all points spanning
the simplex are near each other.

Letters and names refer to points in Figure 4.3 (next page), that illustrates
the transformations for the two dimensional case. Each of the points
spanning the simplex is evaluated using the error metric. The one with
the highest error —the lowest BLEU— will be called worst. The one with
the second highest error is (confusingly) called good. And naturally, best is
the point with the lowest error.

Let us define M as the midpoint between best and good, it will be used to
define the other points in Figure 4.3 (following page):

M =
1

2
(best + good) (4.14)

These transformation are considered in the order they are presented

(a) E : reflection and expansion
If a reflection and expansion of the worst point into E leads to a lower
error score, then replace worst with E.

E = M + 2 · (M � worst) (4.15)

(b) R: reflection
In case the expansion is not, but just the reflection into point R is an
improvement over worst, then replace worst with R.

R = M + (M � worst) (4.16)

(c) C1 : contraction
If C1 is an improvement over both worst and C2, then replace it for
worst and thus contract the simplex.

C1 = M +
1

2
· (M � worst) (4.17)

(d) C2 : contraction and reflection
And the same for the reflection of C1. If C2 is an improvement over
both worst and C1, then replace it for worst and thus contract and
reflect the simplex.

C1 = M +
3

2
· (M � worst) (4.18)

(e) S and M : contraction in all dimensions
If nothing of the above gave an improvement, than shrink all points
halfway towards best. In the case of 2 dimensions, that means replacing
worst with S and good with M.

S =
1

2
· (best + worst) (4.19)

For Simplex in an algorithmic form see Algorithm 4 (p. 31). Again, notation
related issues are as described briefly in section 4.1 (p. 20).
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Figure 4.3: Illustration of the transformations of Simplex for a two dimensional (and
thus simplified) problem. The points best, good and worst refer to the points with
the lowest, second highest and highest error scores respectively.
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Algorithm 4 OptimiseSimplex(w,En
,R)

Require: w a starting point in weight-vector space
Require: En an n-best list e11, . . . , e

n
1 , . . . , e

1
k, . . . , e

n
k

Require: R corresponding reference translations
1: W1  w
2: m |w|
3: for l 2 to m+ 1 do
4: Wl ⇠ U(wmin,wmax)
5: repeat
6: order W such that:
7: Bleu(Ẽwworst) < Bleu(Ẽwgood) < · · · < Bleu(Ẽwbest)
8: wm  1

2 (w
worst +wbest)

9: wr  wm + (wm �wworst)
10: we  wm + 2(wm �wworst)
11: if Bleu(Ẽwe) > Bleu(Ẽwr) > Bleu(Ẽwworst) then
12: wworst  we

13: else if Bleu(Ẽwr) > Bleu(Ẽwworst) then
14: wworst  wr

15: else
16: wc1  wm + 1

2 (w
m �wworst)

17: wc2  wm + 3
2 (w

m �wworst)

18: if Bleu(Ẽwc1) > Bleu(Ẽwworst) and Bleu(Ẽwc1) > Bleu(Ẽwc2) then
19: wworst  wc1

20: else if Bleu(Ẽwc2) > Bleu(Ẽwworst) and Bleu(Ẽwc2) > Bleu(Ẽwc1) then
21: wworst  wc2

22: else
23: wworst  1

2 (w
best +wworst)

24: wgood  wm

25: until kwworst �wbestk < ✏

26: return wbest
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Chapter 5

Theoretical Comparison of

Existing Approaches to

Tuning

In this chapter the three methods described in Chapter 4 (p. 20) are compared on
the basis of some general properties that apply to Machine Learning techniques.
We discuss how each method behaves with respect to this property and how
they compare. We conclude this chapter with some thoughts and directions on
where we see opportunities for improvements in section 5.4 (p. 37).

5.1 General Machine Learning Characteristics

Tuning, or black-box parameter optimisation in general, can be considered a
subfield of Machine Learning. We are concerned with learning from example
data and we aim at learning something that extends beyond those samples. Our
goal is learning to generalise. Here we mention some characteristics associated
with Machine Learning techniques and discuss our approaches in their light.

5.1.1 Exploration versus Exploitation

In Machine Learning there always is a trade o↵ between exploration and ex-
ploitation. An exploring action would be one where there is no evidence that
it would lead to any improvement; going into a direction in the weight-vector
space while there is no indication that it would lead to a higher BLEU score.
While an exploiting action would be one that exploits current knowledge of the
nature of the search space. Such an action is aimed at fast success; on direct
BLEU-score improvements.

The three methods we described all seem to focus more on exploitation —on
climbing the hill— than they do on exploitation —on looking for other hills—.
MERT explicitly focuses on finding optima, optimising dimension by dimension.
Also Simplex is obviously only interested in progress with respect to the objective
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function, it keeps replacing its worst point by improvements. Both methods do
however consider more points than just those that lead to improvements; they
have to, considering the nature of the problem, see section 3.4 (p. 19). MIRA is a
slightly di↵erent case, as it is an on-line algorithm. MIRA might actually update
its weight-vector in a direction that is globally —according to corpus BLEU—
not an improvement. So, MIRA does not perform explicit exploration actions,
but might do so when it is following a training example that is an outlier.

All three methods at least partly rely on random restarts, or partial random
initialisations in Simplex, for exploring behaviour.

5.1.2 Robustness

It is usually a desired property of a Machine Learning algorithm to be robust,
meaning for example that its performance should not degrade quickly due to
minor changes in the training data. Also, an algorithm might rely on random
e↵ects for exploration of the search space, which might render the algorithm
unstable. Multiple runs of the same algorithm might then result in di↵erent
weight-vectors and thus di↵erent BLEU scores.

Foster and Kuhn (2009); Arun et al. (2010) analyse the stability of MERT and
report standard deviations over several runs of the algorithm. In general, MERT
shows a standard deviation of 0.1 up to 0.3 BLEU points, which in SMT terms
is big. No such studies of Simplex and MIRA within the setting of SMT are
known, but will be performed in this work, see Chapter 7 (p. 46).

5.1.3 Convergence

Convergence criteria that decide whether a new iteration —including running
the decoder and obtaining and merging an n-best lists— is required are the same
for all three methods. This criteria is part of the unified framework presented in
this work. These criteria are based on changes in the weight-vector, and the size
of expansion of the merged n-best after the decoder was run. If neither shows a
big change, the tuning is deemed converged.

On top of that MERT, MIRA and Simplex each have their own stopping criteria
within the algorithm. Each of these methods is called with a merged n-best list
and an initial weight-vector. Then they start their own internal iterations and
have a stopping criteria to decide when to stop these iterations.

Simplex is stopped whenever a simplex became su�ciently small kwworst �
wbestk < ✏, with ✏ = 0.0001.

MERT simply explores all dimensions and all points of interest per direction.
No extra iterations are performed afterward, even though it might actually be
worth exploring a dimension again after other dimensions have been changed.

MIRA is stopped from an infinite loop whenever the weight-vector is not changing
much. In our particular implementation: if kw�w0k < ✏, again with ✏ = 0.0001.
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5.1.4 Over-fitting

Over-fitting is the process of modelling the peculiarities of a development set
better than required. A model that is over-fitted performs worse when deployed
on a test-set. The property can not always be ascribed to an optimisation
method. It can also be a property of the data-sets. If a test set is very di↵erent
from a development set, we can hardly expect a model to generalise well towards
the test set. However, since we use all methods on the same data, in the same
setting, we can compare our methods in how far we expect them to over-fit the
development data. Also, sometimes the problem of over-fitting is defined as
the model having too many degrees of freedom for the data it has to model, in
such a case the model would replicate instead of summarise the data. This last
way of over-fitting does not apply to our setting. All approaches to tuning are
limited in that they are to produce a weight-vector of defined dimensions. These
weight-vectors are generally not su�ciently high dimensional to summarise the
training data.

As has been mentioned in this comparison, MIRA deploys an averaging strategy
after all parallel runs of the algorithm to avoid over-fitting. It is easy to imagine
how a single, highly optimised weight-vector —one that performs very well on
a development set— would perform worse on a test-set; it probably sits on a
high, narrow peak in the BLEU objective function. By averaging over a couple
of good performing weight-vectors we arrive at a vector that is representative
of an good area —not just a narrow peak— in weight-vector space. Such an
approach leads to less over-fitting behaviour of MIRA.

Simplex, on the other hand, has such behaviour build in to the algorithm. It only
replaces its worst points with higher ones while trying to expand and converges
when all points that span the simplex are near each other; when all points have
climbed up a peak that is big enough to house the simplex.

Cer et al. (2008) focus their work on preventing MERT from over-fitting, by
introducing a regularisation method. Instead of choosing the maximum point,
with respect to BLEU, per dimension they choose either a minimum BLEU score
of a neighbourhood or the average of that neighbourhood. We did experiment
with implementing these additions but did not observe any improvements, we
also did not come across work of others that confirmed their findings.

On a side note, it is questionable whether over-fitting is possible at all with
our log-linear model. Duh and Kirchho↵ (2008) claim that this model is not
expressive enough to fit the data, let alone over-fit.

5.2 Practical Issues

Many specialised optimisation methods showcase some properties that are there
just because they gain improvements when applied to a specific problem. The No
Free Lunch Theorem for Optimisation (Wolpert and Macready, 1997) explains
why. The authors develop a theory that states that an optimisation technique
that performs well on a certain problem has to pay with performance loss for
other problems. Or, in other words, there is no such thing as a general purpose
optimisation technique. One could read this as an excuse to start fine-tuning
methods to better fit a problem, or to even over-fit a problem. Indeed, the
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authors observe that practitioners of optimisation deploy heuristic methods to
match the right optimisation algorithm to a problem. While some adaptions
might be theoretically justified, others seem peculiar and and are merely present
because they have shown to give improvements in practice.

5.2.1 Initialisation

The initialisation of particularly MERT and MIRA involves some prior knowledge
about what a good weight-vector should look like. However, since there are
claims for at least MERT that random restarts help (Moore and Quirk, 2008),
it is questionable in how far initialisation is important. Still, one could argue
that it should not hurt performance when a method is initialised with a good
starting point.

We choose to also initialise Simplex with the initial weight-vector we use for
MERT and MIRA. In Simplex we simply use it as one of the initial points
spanning the simplex.

5.2.2 Randomness

All our methods use random points in one way or another. In Simplex it is
inherent to the algorithm, in MERT and MIRA it serves as a way to run extra
instances of the algorithm.

MIRA and MERT both expect a initialised weight-vector w. Simplex does
strictly not need this and simply chooses |w|+ 1 random weight-vectors to start
with. We do however feed Simplex with an initial weight-vector at the start of
each iteration.

MERT takes 19 additional random weight-vectors as starting points (next to
the initial vector), and does so in every iteration. Also, the order in which
the weights in the weight-vector are being updated in MERT is a source of
randomness, we do not consider the trial line searches to determine the order of
updating.

In MIRA, since it is an on-line algorithm, the order in which examples (candidate
translation pairs) are presented to the algorithm matters and can be a source of
randomness. In fact, some approaches shu✏e them in every iteration, we did
not do this.

5.2.3 Peculiarities

In MERT the ranges of the 19 random additional points are biased, as is the
choice for the number 19. Nowhere in the original literature there seems to be
much of a justification for these numbers. Only recently, as described in our
related work Chapter 2 (p. 7), Moore and Quirk (2008) investigate the e↵ect of
random restarts in MERT.

In MIRA the setting C = 0.01 (Chiang et al., 2008, 2009) seems arbitrary, even
though we verified it on a held-out dataset, the authors do not give a satisfactory
explanation.
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Simplex uses heuristics to find a replacement for the worst point, their location
and the order in which they are tried is heuristically defined. Although, when
described in words for the two dimensional case the transformation seem intu-
itively sound, this does not guarantee that in higher dimensions this is also the
case.

5.3 Other Properties

5.3.1 Objective Function

Tuning became only possible with the rise of automatic evaluation metrics.
Many metrics have been developed, and so far BLEU seems to have won, see
also section 3.3.1 (p. 15). MERT has been tried with many di↵erent metrics,
variations of BLEU and completely di↵erent objective functions; those listed in
section 3.3.2 (p. 18). Both MIRA and MERT have been seen using BleuS (Lin
and Och, 2004), also called sBleu , which is a sentence based instead of corpus
based metric. Liang et al. (2006) also apply a variant called smoothed BLEU in
MERT and Watanabe et al. (2007b) apply a variant called approximated BLEU
in MIRA.

Like MERT, Simplex can do with the normal, corpus based BLEU score. Since
BLEU is the objective we will finally be judged by, it is also the metric we use
for both these methods.

For MIRA, we choose to not use either BleuS or approximated BLEU and choose
to follow Chiang et al. (2008) instead. Their method uses a moving average over
previously translated sentences to form a pseudo document that can be used as
a corpus to evaluate on using normal corpus based BLEU. Of course, this is still
an approximation of BLEU.

We note here that it is definitely a huge pre for a method to be using the metric
that will be the final judge as the objective function for optimisation directly
(Cer et al., 2010).

Besides these issues, the number of times an objective function has to be evaluated
is crucial if this is a computationally expensive computation, calculation corpus
BLEU is rather expensive. Simplex needs much less such evaluations when
compared to MERT (Koehn, 2008). For MIRA, of course, the story is di↵erent
since BLEU is not calculated over the whole corpus and thus much cheaper per
evaluation. MIRA does need an evaluation for each of the candidates in the
oracle set though.

5.3.2 Parallelisation

All three methods seem on a first glance what is called embarrassingly parallel
(Fox et al., 1994, p. 257). Meaning that it is almost trivial to speed up execution
of the algorithm at no extra costs. This is mainly the case because all three
methods can use random restarts —additional random points next to the initial
starting point— in order to improve performance. Such restart are independent
and can be run in parallel on separate processors.
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For MERT, each of the 20 weight-vectors (19 random plus 1 initial)1 can be
distributed among processors. After each of these restarts reached convergence,
we simply select the weight-vector among these 20 weight-vectors that resulted
in the highest BLEU score.

MIRA could also simply have several independent parallel runs and average
in the end. It was shown by McDonald et al. (2005) that averaging instead of
taking the weight-vector for the maximum BLEU scores lead to less over-fitting.
We follow Chiang et al. (2008) in doing so. Another option that was shown to be
more e↵ective for MIRA, would be to share information between processors. We
did however not implement this variation. Note, however, the set of oracles —O

in Algorithm 3 (p. 28)— is filled independent of weight-vectors, and will therefor
be the same for each parallel run.

Also Simplex could be run independently in parallel on several processors and
share the overall best point after every update. We have opted however to
run several instantiations independently in parallel and take the weight-vector
belonging to the run with the maximum BLEU score after each iteration, just
like MERT.

All three methods would benefit in the same way from the speedup that paral-
lelisation can o↵er.

5.3.3 Dimensionality

For MERT, the number of features that can be used successfully, the maximum
dimensionality of the weight-vector, is rather low; around 15 to 30. MIRA can
handle many more; up to millions, according to the authors that introduced the
method (Chiang et al., 2009).

This property can be ascribed to the fact that MERT is updating and evaluating
individual dimensions of the weight-vector. While MIRA updates the complete
vector. Because of this, in higher dimensions, MERT will be much more likely to
get stuck in local optima, where the one weight it was optimising has its peak.
For some problems it might be necessary to vary in more than one dimension at
a time to find an optimum. If the number of dimensions goes up, this scenario
becomes more likely and thus methods that vary more dimension at a time can
be expected to perform better.

But then, these claims would also hold for Simplex, which is also optimising all
dimensions at once. However, Simplex is limited in its movements, and might not
be able to explore a space that grows exponentially with each added dimension
su�ciently enough.

5.4 Summary of Opportunities for Improved Tun-

ing Approaches

Based on our considerations above, we can identify some properties that might
be desirable for a tuning method, or at least worth an investigation.

1
Note that the original MERT (Och, 2003) used 19 + 1 starting points, we use 23 + 1

starting points, given our 8 core hardware.
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For one, none of the methods has an explicit exploration policy, given the
ruggedness of our objective function, see Figure 3.1 (p. 12), we could expect a
policy that is actively exploring the search space might perform better.

Also, one reason why a method might be unreliable —not so robust— is that
it relies on random samples, and usually just a few. If we would increase the
number of random samples, stability would go up. Of course, this could not
be readily applied to MERT, MIRA or Simplex, because it would lead to just
as much extra run-time, and trading run-time for performance is generally not
desirable, see 3.2 (p. 11).

Current convergence criteria for MIRA and Simplex do not guarantee convergence
at all. MERT does have a strict finite number of iterations, but their number is
not known before run-time. In other words, it is unpredictable for how long each
algorithm would run. We could think of fixing a maximum time, or a maximum
number of iterations after which an algorithm should return. Although such a
limitation might be convenient, we can not expect that it leads to improvements,
except maybe for an early stopping e↵ect that avoids over-fitting (Chiang et al.,
2009).

It has been stated that a good starting point —a good initial weight-vector—
is not a necessity. The reason has been ascribed to random restarts. Random
restarts lead to improvements. Moreover, Simplex takes the majority of its
starting points randomly. We might, as mentioned two paragraphs back, consider
ways of taking many more random points.

Even though a local —a sentence based— evaluation function is cheaper, and
can therefore be applied more often, corpus based BLEU should be preferred as
the objective function during optimisation simply because this metric will also
be the final judge.

Given the given recent progress in hardware (Sutter, 2005), showing a shift
towards multiple processors per machine, we should definitely prefer methods
that are embarrassingly parallel. And if possible even in a more fine-grained
sense. This would allow an optimisation algorithm to distribute work to many
processors in parallel.

Over-fitting issues for out-of-domain test sets —where the development set and
test set are far apart in nature— can be addressed by not only considering
top ranked sentences. All approaches so far are only dealing with either the
1-best sentence or with all other candidate translations with respect to the 1-best
sentence. MERT and Simplex use the corpus BLEU score, only looking at the
top sentence, while MIRA uses sentence BLEU score di↵erences between some
candidates and a single oracle. It might very well be beneficial to also start
considering where runners up to the best sentence end up.

In the next chapter we will introduce two new approaches to tuning that will
address the above opportunities.
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Chapter 6

New Approaches to Tuning

This chapter will introduce two new approaches to tuning within the SMT setting
based on our findings in Chapter 5 (p. 32) and in particular section 5.4 (p. 37).

Our initial motivation to start this research in the first place is the intuition that
performing tuning in order to get the best translation on top could be improved
by also aiming at getting the second best second on the second place, the third
best third, etcetera. Such an approach would learn a model that should also do
reasonably well in places where a source sentence does not match the training
data, the data that we build our phrase table and language model on, as good
as the development data did. In other words, it would do well where the best
sentences are simply not available and we have to all back on second or even
third best sentences. We would expect such a method that takes a ranking into
account to perform better on so called out of domain test data.

But before diving into that investigation we were curious whether the often
stated assumption that our search space is to big to explore in ordinary fashion,
actually holds. What happens if we try a rigorously di↵erent approach of just
repeatedly sampling our search space? We are encouraged with what is listed in
section 5.4 (p. 37). An investigation follows next.

6.1 A Sampling Approach to Tuning

As has been mentioned in for example section 3.2 (p. 11) on tuning, iterating
over all possible values for w to perform Equation 3.6 (p. 12) is not feasible
since we are dealing with a real-valued space that su↵ers from the curse of
dimensionality (Bellman, 1957, p. IX). We can however take samples from the
weight-vector space and evaluate each of these samples. This seems a rather
naive and impractical approach, but given the simplicity and the appeal that
comes with simplicity, it should be tried. Also, our findings in the comparison of
existing methods in the previous chapter encourages us to see where such an
approach brings us. See section 5.4 (p. 37).

Many ways of performing sampling exist. It is far beyond the scope of this work
to provide an overview. In his PhD thesis, Pedersen (2010) describes, proposes
and fine-tunes some black-box optimisation techniques. Where he defines a
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black-box optimisation technique as one that does not use any gradient informa-
tion but a fitness function instead to guide the search for optimal parameters.
We have a problem that needs such an optimisation technique. One of the
algorithms described by Pedersen (2010) is a straightforward algorithm called
Local Unimodal Sampling (LUS). It is called that way because it was designed to,
and does, perform well on unimodal problems.1 Our problem seems distributed
more or less unimodal, see Figure 3.1 (p. 12) and Appendix A (p. 76), at least
when each dimension is considered individually. We do not claim this to hold
in the combined high dimensional space of all features. For what it is worth,
if these figures can show us anything, it is that our space is not distributed
non-unimodal.

We proceed with a description of our sampling method, largely following Pedersen
(2010, p. 14) and adapting his work to our setting where necessary.

1. The LUS method starts with an initial point in weight-vector space. This
point is either the initial weight-vector, the best weight-vector from the
previous iteration or chosen randomly, with a uniform distribution within
limits (as was done for MERT, MIRA and Simplex).

w ⇠ U(wmin �wmax) (6.1)

Vector wmin denotes the lower bound of weight-vectors, wmax the upper
bound.2

2. Set the initial sampling range d to be of the size of the initial weight-vector
space.

d = wmax �wmin (6.2)

3. Until termination, a fixed number of iterations i, repeat the following
updates to either w or d:

(a) Pick a random direction vector a that will be used to move w to w0:

a ⇠ U(�d,d) (6.3)

(b) So, add a to the current weight-vector w to create a new candidate
weight-vector w0:

w0 = w + a (6.4)

(c) If the candidate performs better, if Bleu(Ẽw0) > Bleu(Ẽw), then move
to the new position by setting

w = w0 (6.5)

otherwise decrease the sampling-range by multiplying with factor q,
see (6.7):

d = q · d (6.6)

4. Now w holds the best weight-vector we could find in the fixed number of
iterations; after sampling i times.

1
And apparently also because lus is Danish for louse.

2
See section 7.1.1 (p. 46) for the ranges that define these bounds.
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We are left with an undefined q, and we follow Pedersen (2010) when he describes
the decreasing sampling range. In general, and at first, we sample from a space
defined by our lower and upper bound for weight-vectors. In fact, we allow for
our samples to go beyond those boundaries, nothing guarantees that we will end
up between them.

But as soon as a sample does not improve the BLEU score; as soon as the
candidate w0 is worse than w, we decrease the area in which we sample; we
zoom in on w. Pedersen (2010) defined q as depending on the dimension of the
weight-vector space, m = |w|, and ↵:

q  2�
↵
m (6.7)

For a set of experiments we set ↵ = 0, to see the e↵ect of sampling alone, without
any zooming in. We also estimated ↵ on a separate dataset,3 and found that
↵ = 1

100 gave us the most satisfying results, more so than the ↵ = 1
3 suggested

by Pedersen (2010). Making the learning rate dependent on the number of
dimensions ensures that we do not zoom in too quickly for higher dimensions;
for larger spaces. If we would zoom in rather quickly, we risk missing a better
local optimum. On the other hand, if we would not zoom in at all, we would
leave the sampling space to big, and our samples will turn out to be too sparse,
especially for higher dimensions. So, we find the classical trade-o↵ in Machine
Learning between exploration and exploitation here.

We have our experiments in Chapter 7 (p. 46) using both LUS↵=0 and LUS↵=1/100.

As with other methods, it is trivial to parallelise this algorithm, it is so called
embarrassingly parallel. We run our algorithm with a weight-vector from the
previous iteration —or the initial weight-vector— on one core, while we take a
random weight-vector, within limited ranges4, for an additional 7 cores. Running
each instance with i = 50, 000, see Algorithm 5 (following page), gave us good
results on a reserved portion of the separate dataset,5 while staying within
decent time limits. In total, each iteration involved 400,000 BLEU evaluations,
which can be considered a lot and thus very expensive. On the other hand, our
sampling approach involves hardly any other calculations.

For a more algorithmic listing of LUS, see Algorithm 5 (following page).

6.2 A Ranking Approach to Tuning

All existing methods, as mentioned in the previous chapter as well as our sampling
approach, are focusing on getting a single sentence in an n-best list on top, see
section 5.4 (p. 37). Generally this is the sentence with the highest BLEU score,
or in the case of MIRA it is a combination of BLEU and model-score. It might
very well be in such a method that the second best sentence —no matter how
best is defined— is nowhere near the top. A weight-vector learned that way is
likely to do well on the training/tuning sentences; it will be good at getting those

3
Again, as with setting C in MIRA and SVM-Rank, this was done on MT02, LDC2003T18.

We reserved a portion for estimating the sample size though.
4
See section 7.1.1 (p. 46) for the specific ranges.

5
We used the reserved portion of MT02, LDC2003T18. See also Figure 7.7 (p. 62) and its

discussion.

41



Algorithm 5 OptimiseLus↵(w,En
,R)

Require: w a starting point in weight-vector space
Require: En an n-best list e11, . . . , e

n
1 , . . . , e

1
k, . . . , e

n
k

Require: R corresponding reference translations
1: m |w|
2: q  2�

↵
m

3: bleumax Bleu(Ẽw,R)
4: d wmax �wmin

5: repeat
6: a ⇠ U(�d,d)
7: w0  w + a
8: if Bleu(Ẽw0 ,R) > bleumax then
9: bleumax Bleu(Ẽw0 ,R)

10: w w0

11: else
12: d q · d
13: until repeated i times
14: return w

sentences on top. When tested on a di↵erent set, it might very well perform
much worse.

To put it di↵erently, a weight-vector that is learned using a method that is solely
looking at single best translations will perform well in cases where such a good
translation is constructible from the phrase table. When deployed in a setting
where phrases are harder to construct, and where we can not even expect good,
let alone best, translations, this vector might not perform good at all.

On the other hand, if we where to prefer not only the best but also some inferior
translations to even lesser ones, we might end up with a weight-vector that
performs good in the before mentioned situation.

This is the intuition behind our Ranking approach: we are not only concerned
with getting the best translation on top, we rather aim at learning a weight-vector
that sorts translations from best to worst; we are interested in the best ranking.

6.2.1 A Variety of Possible Ranking Approaches to Tuning

In the Information Retrieval field, many approaches to solving Ranking problems
exist and many can be applied to our problem. Here we are presenting a range
of ideas. Note that we will choose the pair-wise approach, and merely present
the other approaches for reasons of completeness.

Rank Regression

One could simply apply Linear Regression techniques to predict a metric using
the feature values on a candidate by candidate basis. And instead of the metric
one could think of predicting the rank. A downside of such a method is that we
will not be able to use previous or a priori knowledge; we can not incorporate a
weight-vector from the previous iteration.
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Another problem is that linear regression in general does not perform well in
higher dimensional space, an issue we could address by using dimensionality
reduction techniques as done in Principal Component Regression by (Hawkins,
1973).

Ranking Metric

A very di↵erent approach to obtaining a good ranking is to adjust the objective
function to incorporate the quality of the ranking. In the Information Retrieval
field such metrics are common. We could think of Precision at n (P@n) or
Discounted Cumulative Gain (DCG). Such methods rely on a precision or
relevance score for which we can use BLEU. At each rank we will need such a
score. We simply take for rank 1 the normal BLEU score. For rank 2 we consider
all candidates in all n-best lists that came second according to the model-score
calculate BLEU on them as if they where the best, and so forth.

This new objective function could then be used together with any optimisation
algorithm that uses a holistic metric, like MERT or Simplex.

Exploratory investigation into this method learned that the necessary BLEU
evaluations to obtain a ranking metric were prohibitively expensive.

Pair-wise Ranking

Again a di↵erent approach would be the pair-wise approach where pairs of
sentences are taken and the preference of one over the other is learned. When
enough pairs are taken into consideration a ranking is learned implicitly. This is
the route we take, and the approach is explained in detail below.

6.2.2 Our Ranking Approach to Tuning

An algorithm for performing this ranking is SVM-Rank introduced by Joachims
(2002), and based on his older work in Joachims (1999). Many more pair-wise
ranking algorithm exist, see Liu (2009, p. 258) for some examples, we favoured
SVM-Rank for its good generalisation ability.

We can rephrase the words of Joachims (2002, p. 135), for the SMT tuning
setting.

For a foreign sentence fi and an n-best list En
i consisting of candidate translations

into the target language, the optimal tuning system should return a ranking r
⇤

that orders the translations in En
i according to their BLEU score.

Our system will not exactly return a ranking r
⇤ but rather a weight-vector

w⇤ that orders an n-best list when the dot-product with its features is taken
according to r

⇤.

What follows is a reformulation of the SVM-Rank method to fit it into the tuning
setting.

For each source sentence fi 2 F we can construct an optimal ranking r
⇤
i , so that

the translation candidates eji 2 En
i are ordered according to a sentence based

BLEU score. These BLEU scores are, of course, an approximation of the real
BLEU score. We use the same pseudo-document variation as MIRA does.
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We define our optimal ranking as follows:

r
⇤
i ⇢ En

i ⇥En
i (6.8)

So, r⇤i is a subset of all possible translation pairs, with the following restriction:

8(eji , e
l
i) 2 r

⇤
i , Bleu(eji ) > Bleu(eli) (6.9)

We can now perform tuning by finding the weight-vector w that maximises the
number of the following inequalities that is fulfilled:

8(ej1, el1) 2 r
⇤
1 : w · (ej1, f1) > w · (el1, f1)

... (6.10)

8(eji , e
l
i) 2 r

⇤
i : w · (eji , fi) > w · (eli, fi)

That is, we are trying to find that w that gives us model-scores that obey the
optimal rankings.

However, Ho↵gen et al. (1995) proved this problem to be NP-hard. But not if
a non-negative slack variable ⇠ for each translation pair is introduced, we can
approximate the solution (Cortes and Vapnik, 1995) as follows:

w⇤ = argmin
w

1

2
w ·w + C

X
⇠j,l,i (6.11)

subject to the constraints

8(ej1, el1) 2 r
⇤
1 : w · (ej1, f1) � w · (el1, f1) + 1� ⇠j,l,1

... (6.12)

8(eji , e
l
i) 2 r

⇤
i : w · (eji , fi) � w · (eli, fi) + 1� ⇠j,l,i

and
8j8l8i : ⇠j,l,i � 0 (6.13)

We can re-arrange (6.12) into the following constraint:

8j8l8i : w · ( (eji , fi)� (e
l
i, fi)) � 1� ⇠j,l,i (6.14)

Making our optimisation problem an ordinary classification problem on pair-wise
di↵erence vectors; di↵erence vectors of the feature vectors of translation pairs:
 (eji , fi) �  (eli, fi). Solutions to this type of problems exist, in the form of
SVM classifiers.6 Such a classifier learns a model of which we can extract the
weight-vector w.

For a compact implementation, see Algorithm 6 (facing page). To make our
solution computationally feasible, we had to set some limitations on the number
of pairs we consider. Line 5 in our actual implementation is replaced by j  1
to 3 and Line 6 by l j + 1 to j + 31. Giving us 90 pairs per source sentence.
More than three times as much as considered by MIRA. As in Algorithm 3

6
We use SVM

light
and refer to Joachims (1999) for implementation details.
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Algorithm 6 OptimiseRank(w,En
,R)

Require: w a starting point in weight-vector space
Require: En an n-best list e11, . . . , e

n
1 , . . . , e

1
k, . . . , e

n
k

Require: R corresponding reference translations
1: t 1
2: for i 1 to k do
3: order En

i such that:
4: Bleu(e1i ) > Bleu(e2i ) > · · · > Bleu(eni )
5: for j  1 to n� 1 do
6: for l j + 1 to n do
7: dt   (eji , fi)� (eli, fi)
8: ct  1
9: dt+1   (eli, fi)� (e

j
i , fi)

10: ct+1  �1
11: t t+ 2
12: svm SVMClassifier(d, c, C)
13: return model(svm)

(p. 28) we use C, and set it the same way as we do for MIRA, to C = 0.04 in
this case.

In a sense, the SVM-Ranking approach is very similar to the approach of MIRA
in section 4.2 (p. 23). The main di↵erence is that MIRA only considers pairs
with the oracle. It could be said that in this approach multiple oracles are used
instead of just one. MIRA also takes the loss, the di↵erence in Bleu scores, into
account, in our setting a pair is simply ordered correctly or not, it is binary.

6.3 Summary of Advantages of Our New Ap-

proaches to Tuning

The generality and simplicity of the LUS method is appealing; it makes it
di�cult to introduce errors in actual implementations and easy to understand.
Its exploratory nature makes the method fit for rugged surfaces as the one we are
dealing with. The fact that the algorithm itself is computationally very cheap
allows us to evaluate many points in weight-vector space. Also, the fact that
the weight-vectors we consider are chosen relatively freely can bee seen as an
advantage. We are not limited to changing one dimension at a time nor by a
fixed set of transformations. The opportunities for parallelisation this algorithm
provides us with are not exploited fully by us, but are definitely an asset.

The main selling point of our SVM-Rank algorithm has to be its consideration
of runner ups to the best candidate translation, and the appeal that comes with
this intuitively attractive approach.

In the next chapter we will verify whether we really made progress and thus
whether the claimed advantages will indeed lead to improved performance. We
will see that LUS↵=1/100 will outperform any other method while SVM-Rank
does not seem to be an improvement.
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Chapter 7

Experiments

In this section we describe how our systems are evaluated empirically. The
systems we will evaluate are our own implementations of existing algorithms
MERT, MIRA, Simplex, and our own methods SVM-Rank and two variations of
the LUS method: LUS↵=1/00 and LUS↵=0.

We (re)implemented all methods for our own understanding. Diving into the
code forces one to care about the details. And often the details matter. Also,
using our own implementation ensures us that methods are behaving the way
they do because of properties of the method and not due to some side e↵ect of
wrapper scripts or libraries used.1

First we will detail our experimental setup in section 7.1 and then continue
with the results of our methods deployed in this setup in section 7.2 (p. 50). In
section 7.3 (p. 66) we discuss if and why results did not match our expectations.

7.1 Experimental Setup

For our experiments, we only consider Arabic to English translation. This section
describes both the tools and the data we use for our experiments. We detail the
settings used and the preprocessing we applied. Finally, in section 7.1.5 (p. 48)
we describe our evaluation method and how we decide on statistical significance.

7.1.1 Decoder

All experiments are run with Moses (Koehn et al., 2007) as the decoder, using
the default 8 features, listed in Table 7.1 (next page), (word-penalty, distortion-
penalty, language model and 5 times translation model) and its default settings
(distortion limit 6, table limit 20). We did not bother fiddling with settings too
much since we are mostly interested in relative improvements and not so much in
achieving the highest score possible. Although we acknowledge that improving
on a low baseline is easier and less an achievement than doing so on a high one,
we believe that our baseline is su�ciently competitive. All our n-best list were
retrieved with n = 500, except when explicitly stated otherwise.

1
An interested reader can contact the author to obtain a copy of the code.

46



Feature Description Initial Weight Weight Range

l p(e) language model 0.5 (0,2)
w w(e) = e|e| word penalty -1 (-1,1)
d d(f , e) distortion model 0.3 (0,2)
t-1 p(f |e) phrase translation probability 0.2 (0,0.5)
t-2 lex(f |e) lexical weighting 0.2 (0,0.5)
t-3 p(e|f) phrase translation probability 0.2 (0,0.5)
t-4 lex(e|f) lexical weighting 0.2 (0,0.5)
t-5 e1 = 2.718 phrase penalty, fixed per

phrase
0.2 (0,0.5)

Table 7.1: The 8 features with their short name and description, used for our default
setting. The initial weights are Moses’ defaults and denote how weights for each
feature are initialised to obtain the first n-best list. Random weights, if they are
used, are taken within the given range.

We also used the default ranges2 in which weights for the features can be
randomised, the so called lambda settings. See Table 7.1 for a listing. Note that
weight-vectors are not restricted to stay within these ranges; only initial random
weight-vector have to obey these limits.

7.1.2 Language Model

The language model is build using SRILM (Stolcke, 2002) toolkit. We applied
Kneser-Ney smoothing (Kneser and Ney, 1995) and interpolation to build a
4-gram language model.3 We did not apply any filtering of our language model.
Although, in order to obtain smaller models while tuning on a fixed set of
sentences, we did filter our phrase table, as described below. We then based
on that filtered phrase table our language model in such a way that no n-gram
included a word that did not occur in either target side or source side of our
phrases table. This should, and did not, have any e↵ect on performance except
for a speedup.

n #ngrams

1-gram 1383469
2-gram 25235571
3-gram 47567930
4-gram 85556331

Table 7.2: n-gram counts for the Language Model used in every experiment in this
work.

The model was estimated on the English Gigaword corpus (Gra↵ et al., 2007,
LDC2007T07) and the non-overlapping parts of the English side of the parallel
data, see section 7.1.3 (next page). The total corpus consists of about 33M lines,
or about 800M words. Table 7.2 lists the size of the resulting language model.

2
Default in the MERT implementation that comes with Moses.

3
Our exact parameters are: -order 4 -interpolate -kndiscount.
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LDC-catalog Name #lines #words

LDC2004T18 Arabic-English Parallel News Part 1 88K 3.3M
LDC2006E25 GALE Y1 Arabic-English Parallel News 65K 2.4M
LDC2005E46 Treebank Arabic-English Translation 25K 0.7M
LDC2004E72 eTIRR Arabic-English News 4K 92K
LDC2007T08 ISI Arabic-English Automatically Extracted 160K 4.5M

Total 343K 11.1M

Table 7.3: Datasets used to build the Phrase Table. The counts are only on the
english —target— side of the parallel text. The texts on the target side, except for
LDC2007T08, were added to the training data for the language model.

7.1.3 Phrase table

For training the phrase table, the standard tools that come with Moses are
used. So Giza++ (Och and Ney, 2000) is used for alignments with the default
grow-diag-final heuristic to refine word alignments. Phrases up to 7 words
are extracted and scored.

As bi-texts we used LDC data, see Table 7.3. The resulting Phrase table consist
of a total of 7.6M phrases.

When deployed in the tuning setting, the sentences that are to be translated
are fixed. We can therefore get a speedup for free —we don’t pay with worse
translations— if we filter our phrase table to only include phrases that will, or
could, actually be used. Any source phrases that do not occur in the dataset we
are to translate can be omitted from the phrase table.

7.1.4 Lexicalised Reordering

Since 8 features is rather small compared to some other work in the field, we
also trained a Lexicalised Reordering model (Tillmann, 2004; Kumar and Byrne,
2005; Koehn et al., 2005), adding another 6 features and thus weights. We used
the default msd-bidirectional-fe configuration, see Table 7.4 (facing page). Where
it is noted explicitly, we added these additional features, mainly to test how
tuning methods perform with a larger number of weights.

7.1.5 Evaluation

As has been the convention for some years now, we use BLEU (Papineni et al.,
2001) as the metric for evaluating our experiments. For an explanation of
how BLEU works and a more theoretical discussion of BLEU see section 3.3.1
(p. 15). The standard NIST mteval-v11b.pl script is used to score the output
of the decoder against the reference sentences. We report the cumulative 4-gram
BLEU-score and do not consider any casing (we do not perform re-casing or
true-casing) since that would unnecessarily complicate our pipeline and would
not be of any help in judging the di↵erence between tuning methods.

For tuning the MT04 dataset is used, while the resulting parameters are tested
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Feature Description

d-1 p(monotoneprevious|f , e), the probability this phrase is monotone with the
previous phrase.

d-2 p(swapprevious|f , e), the probability this phrase is swapped with the pre-
vious phrase.

d-3 p(discontinuousprevious|f , e), the probability this phrase is discontinuous
with the previous phrase.

d-4 p(monotonenext|f , e), the probability this phrase is monotone with the
next phrase.

d-5 p(swapnext|f , e), the probability this phrase is swapped with the next
phrase.

d-6 p(discontinuousnext|f , e), the probability this phrase is discontinuous with
the next phrase.

Table 7.4: The additional 6 features with their short name and description. Note
that each probability is conditioned on both source and target phrase; on both e
and f . Theses features are always used in conjunction with the features in Table 7.1
(p. 47). Weights for these features are initialised uniform, with wi = 0.3 and are
randomised in the range (0.0, 2.0)

LDC-catalog Name #lines #references

Dev LDC2006E44 MT04 1353 5

Test
LDC2006E39 MT05 1056 5
LDC2009T05 MT06 1797 4

MT08 1360 4

Combined 5566 4

Table 7.5: Evaluation datasets. All experiments are trained on MT04 and tested
on MT05, MT06 and MT08. In the combination of the four sets, we have only
considered the first 4 references for each sentence.

on MT05, MT06 and MT08. The volumes and LDC-catalog numbers are listed
in Table 7.5. Throughout this thesis we will use the short names (MT04, MT05,
etc.) to refer to these datasets.

MT04 and MT05 have 5 references for each sentence possibly causing higher
BLEU-scores compared to MT06 and MT08, which have only 4 references per
sentence.

Both MT04 and MT05 mainly consist of news-wire, while MT06 and MT08 are
mostly web-data. When tuning on MT04, it can be expected that BLEU scores
for MT05 are much higher than BLEU scores on MT06 and MT08.

Our experiments are run 4 times, unless stated otherwise, and the reported
BLEU-scores are averaged over these runs. Also the standard deviation between
BLEU-scores of these runs is reported and should be taken as an indication of
the stability of the methods, as was done recently by Arun et al. (2010).
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Statistical Significance

BLEU scores alone are generally not enough evidence to prefer a certain weight-
vector over another. To compare two tuning approaches, it is enough to compare
the weight-vectors that resulted from deploying these approaches to the same
setting. So, when we talk about comparing two systems that is equivalent to
saying that we compare two weight-vectors, two methods or two approaches.

Koehn (2004) proposes a method for deciding on which of two system, and thus
weight-vectors, is significantly better using Paired Bootstrap Resampling.

The proposed procedure, and the procedure we use is the following.

1. Choose two systems for comparison.

2. Use the combination of all datasets mentioned in Table 7.5 (page before).

3. Repeatedly, 100 times, do the following.

(a) Take a random sample with replacements of 300 or 3000 sentences.

(b) This sample is again 1000 times re-sampled with replacement.

(c) Each of these 1000 sets is translated using both systems and evaluated
using BLEU4.

(d) We note the number of times each system has the higher BLEU score.

4. The percentage of times, out of 100, that one system outperforms the other
with at least 0.95 percent is reported.

Koehn (2004) showed that if the sample size grows, that there are progressively
less errors in the decisions made by this procedure. We have chosen not to take
all sample sizes used by Koehn, but to only consider samples of sizes 300 and
3000. In fact, he showed that a sample size of 300 was su�cient for judging one
system significantly better than another for his setting. In that case the 100
repetitions would also not be necessary. However, given that we are dealing with
a di↵erent setting, we decided to partly repeat his experiments and perform the
repeated sampling with di↵erent sampling sizes.

7.2 Results

This section lists, describes and interprets result obtained from running each of
the 5 methods5 described in Chapter 4 (p. 20) and Chapter 6 (p. 39) using the
setup described above.

In section 7.2.2 (p. 54) we investigate the performance of each method individually.
In section 7.2.3 (p. 63) we compare all systems to each other to see which system
outperforms the others, and whether a gain in performance is significant. Then
we will list and discuss some weight-vectors that result from training with our
methods in section 7.2.4 (p. 65). However, first we will look at some absolute
BLEU scores.

4
We did not actually translate the sentences for each sample, we precomputed our transla-

tions at the start of the procedure.
5
We run and report result for LUS with ↵ set to ↵ = 1/100 and some experiments with

↵ = 0.
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Dataset
Existing methods New methods

MERT MIRA Simplex LUS↵=1/100 LUS↵=0 SVM-Rank

Dev MT04
0.4802 0.4550 0.4386 0.4849 0.4545 0.4402
0.0020 0.0000 0.0198 0.0006 0.0085 0.0000

Test

MT05
0.5335 0.4883 0.5170 0.5284 0.5064 0.5319
0.0030 0.0000 0.0068 0.0006 0.0243 0.0000

MT06
0.3852 0.3643 0.3512 0.3874 0.3656 0.3515
0.0031 0.0000 0.0170 0.0018 0.0050 0.0000

MT08
0.3736 0.3492 0.3469 0.3801 0.3601 0.3505
0.0017 0.0000 0.0151 0.0009 0.0077 0.0000

Table 7.6: BLEU scores are obtained by running the decoder with weight-vectors that
resulted when each algorithm was optimised on MT04. BLEU scores are averaged
over 4 runs, the highest scores per dataset are printed bold, the standard deviation
over the four runs is printed in italic.

7.2.1 Comparing Machine Learning Characteristics

BLEU scores for all our methods, and two variations of the LUS method, are
listed in Table 7.6 for the default 8 feature case and in Table 7.7 (following page)
for our extended 14 feature scenario.

Both tables list BLEU scores obtained after running each of the 6 algorithms
until convergence. Then, the resulting weight-vectors are used to translate each
of the datasets, and each set of translations is compared to the relevant reference
translations. Per algorithm, this procedure is repeated 4 times and BLEU scores
are averaged over 4 runs. Also the standard deviation over these 4 runs is
reported. The first table shows scores for the default 8 features as described
in section 7.1.1 (p. 46). The second shows results for when we added the 6
additional described in section 7.1.4 (p. 48).

Let us discuss the results listed in both Tables 7.6 and 7.7 (following page)
together. The following sections denote the empirical characteristics —the
behaviour— of our methods that we can extract from these results. We do so
by discussing the relevant Machine Learning characteristics, as mentioned in
section 5.1 (p. 32).

Over-fitting and Robustness

One of the most striking result when looking at Table 7.6, is the lack of gen-
eralising ability of MIRA, when compared to Simplex and SVM-Rank, or any
other method for that matter. Or, put the other way around, the incredible
generalisation abilities of Simplex and SVM-Rank, when compared to MIRA.
MIRA does considerable better than Simplex on de development set (+1.65
BLEU points6), but on the most similar test set, MT05, MIRA does worse than
Simplex (-2.86 points). On the other test sets MIRA does outperform Simplex,

6
We follow the convention in SMT literature to call an increase from a BLEU score of

0.4385 to 0.4550 an increase of 1.65 BLEU points.
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Dataset
Existing methods New methods

MERT MIRA Simplex LUS↵=1/100 LUS↵=0 SVM-Rank

Dev MT04
0.4889 0.4575 0.4497 0.4930 0.4487 0.4477
0.0000 0.0000 0.0065 0.0018 0.0202 0.0000

Test

MT05
0.5327 0.5045 0.5009 0.5324 0.5065 0.5263
0.0000 0.0000 0.0100 0.0021 0.0246 0.0000

MT06
0.3919 0.3683 0.3635 0.3952 0.3662 0.3582
0.0000 0.0000 0.0048 0.0018 0.0200 0.0000

MT08
0.3823 0.3589 0.3557 0.3867 0.3573 0.3573
0.0000 0.0000 0.0050 0.0019 0.0192 0.0000

Table 7.7: A table similar to Table 7.6 (preceding page), using 6 extra lexicalized
reordering features, see section 7.1.4 (p. 48). BLEU scores are obtained by running
the decoder with weight-vectors that resulted when each algorithm was optimised
on MT04. BLEU scores are averaged over 4 runs, the highest scores per dataset
are printed bold, the standard deviation over the four runs is printed in italic.

but not as much as would be expected given the gain on the development set. We
might be able to at least partly blame this on the instability of Simplex that has
a standard deviation of 1.47 BLEU points on average, making it an unreliable
method to compare another method to. In that sense, MERT for example is
much more stable with an average standard deviation of 0.24 BLEU points, and
thus better suited to serve as a basis for comparison. But also compared against
MERT, MIRA shows an absence of generalisation on MT05; MIRA does 2.52
points worse than MERT on the development set, and with 4.52 points, much
worse on MT05. Again, on the other two test sets, MIRA does seem to generalise
slightly.

This over-fitting behaviour of MIRA is definitely most present in the results
of Table 7.6 (page before), but the trend is also visible in Table 7.7. While
we just stated that Simplex seems to generalise well, this does not show in
Figure 7.1 (next page). That graph shows the objective function of our five
methods, calculated on the n-best lists. We see that Simplex is greedily climbing
the function while both MERT and LUS stabilise after only 4 iterations. MIRA
and SVM-Rank are both not explicitly optimising this objective corpus BLEU
function, and this visible; both show that the corpus BLEU is dropping almost
every iteration.

When turning to our new methods we have to mention our surprise at the
performance of LUS↵=1/100. This sampling based method is outperforming any
other method both on our development set and on 2 out of 3 test sets. Not
just in BLEU scores, which is achievement, but also in stability. This method is
able to score higher than any other method while doing so more reliable. This
is not just the case, as one might expect, on our 8 feature test case, also with
more features our zooming sampling method outperforms all other methods most
of the time, see Table 7.7. It is still MERT that performs best on MT05, but
LUS↵=1/100 comes su�ciently close (only 0.03 BLEU points behind), making up
by performing better on the development set as well as transferring the learned
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Figure 7.1: Internal objective function for each of the methods over 6 iterations,
measured while tuning on the development dataset MT04. Since both MIRA and
SVM-Rank do not explicitly optimise corpus BLEU, it is calculated separatly for
the resulting weight-vector on the n-best list after every iteration. LUS here refers
to LUS↵=1/100.

knowledge to the test sets.

Exploration versus Exploitation

Another eye-catcher is the variation in standard deviations. Some are mentioned
already. We have two extremes here. On the one hand MIRA and SVM-Rank
with no variation at all. Every run these methods behaves just the same. While
Simplex very much seem to depend on initial and additional random points and
LUS↵=0 is also very depended on the specific random weight-vectors selected in
a run. Both properties are undesirable: the sti↵ness of MIRA and SVM-Rank
keep it from exploring much of the weight-vector space, while the flexibility of
Simplex and LUS↵=0 make it unpredictable methods. MIRA and SVM-Rank
exploit too much, Simplex and LUS↵=0 do so too little and vice versa. The other
methods, MERT and LUS↵=1/100 seem to have found a better balance between
the two.

There has to be a limit to what one can do using a sampling method. It will
su↵er from the curse of dimensionality : as the dimensionality goes up, the size
of the weight-vector space grows exponentially. Since we will still be bounded
by a certain amount of maximum time we can spent on tuning, we can not allow
the number of samples to grow exponential as well. The e↵ect will be that our
samples of the space will become sparser. This might lead to the expectation
that performance will drop if the dimensionality, the number of features, goes
up. In fact, when we look at the performance of LUS↵=0, that is exactly what
happens. Using the default 8 features, this method performs better than when
using de additional 6 lexicalised reordering features (+0.58, -0.01, +0.06 and
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Figure 7.2: The process that generates graphs like Figure 7.3 (p. 56). The decoder is
re-run for each dataset with each optimised weight-vector. This whole process is
repeated 4 times for each method.

+0.28 BLEU points). This performance drop can definitely be contributed to
the curse of dimensionality ; none of our other methods performs worse when
the extra features are added.

However, that is what happens if ↵ is kept to 0, and therefore the learning rate
parameter q is kept to 1. In other words, if the we are not zooming in on the
current optimal solution. On the other hand, if we set ↵ to a fraction, and to
1

100 in particular7, then q goes to 2�
↵
m where m is the dimensionality. So, for

m = 14, learning rate q ⇡ 0.999505 and for m = 8, q ⇡ 0.999134. This causes the
space d, around the current optimal point, in which we sample to shrink slowly.
We zoom in towards the currently found optimum, and in higher dimensions we
do so on a slower pace, since our samples are more sparse and we are thus more
likely to have missed a higher local optimum we should zoom in on.

It turns out, this strategy works in practice. The LUS↵=1/100 always outperforms
LUS↵=0 with 2 to 3.5 BLEU points, which in SMT terms is a huge improvement.
We will discuss these matters further in section 7.2.2 (p. 60).

7.2.2 Behaviour of Individual Approaches

In this section we discuss the results for each method individually, in the sense
that we do not focus on comparing the approaches. An explanation of the graphs

7
See also section 6.1 (p. 39).
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and tables in this section is in place.

We show graphs as in Figure 7.3 (next page). What we see in such a graph
is the progress over iterations of a method —MERT in this case— on all four
the datasets. Each line denotes the progress, in BLEU score, on its respective
dataset. These scores are obtained by running the decoder on the respective
dataset after they where tuned on MT04, our development set. We did that for
our development set itself as well. This explains the drop in performance on
the development set, after the first iteration. The objective function that the
tuner is optimising might point at higher BLEU scores as in Figure 7.1 (p. 53),
however these scores are computed on a re-scored n-best list, not by re-running
the decoder. On the left vertical axis the initial BLEU score is depicted, this is
the BLEU score obtained using the initial weight-vector, see section 7.1.1 (p. 46),
these initial scores are the same for all graphs of this kind. The BLEU score on
the right vertical axis denotes final performance of the method on the respective
dataset. This process is depicted in Figure 7.2 (facing page), and is repeated 4
times to obtain 4 BLEU points per dataset per iteration. The standard deviation
is depicted in the graphs by a gray area around the mean.

Besides this graph, each method is discussed on basis of a table like Table 7.8
(next page). Such a table illustrates how 8 candidate translations are ordered
by the respective method. Below each iteration number, the numbers denote
how each candidate translation is ranked by the system after that iteration
converged. The candidate translations are sorted in the table by their final
ranking, the last column before the BLEU score. Ideally the BLEU score should
show a descending order. However, keep in mind that BLEU scores are generally
calculated on the basis of a corpus, not a single sentence. This means that
while tuning, the performance on one sentence might go down simply because
it goes up on average. Also, the BLEU score we denote in these tables is Bleu2,
for reason described in section 3.3.1 (p. 15). Note that sometimes the table
mentions less iterations than the graph. In those cases we cut the table o↵
if the order of the translations did not change any more. Since we used the
same candidate translations for each method, to allow for easier comparison,
sometimes a translation is missing if it was not present in the merged n-best list.
We used the same sentence as in Table 3.1 (p. 14) which originates from the
MT04 dataset.

Performance and Behaviour of MERT

See the beginning of section 7.2.2 (facing page) for an explanation of how graphs
like Figure 7.3 (next page) are generated. What we observe is that the BLEU
score for each dataset shows a dip, right after the first iteration, most likely
due to an n-best list that is too small and not representative enough. However,
MERT recovers quickly, at least as far as the performance on both MT04 and
MT05 is concerned. On those two, relatively similar, datasets the evaluation
metric quickly shows improvement and stability, with a standard deviation that
becomes smaller. MT06 and MT08 however need more iterations with training
on MT04 before they show improvement above initial scores. This can probably
be blamed on the di↵erent nature of those two datasets, di↵erent from MT04.
MERT needs to generalise more in order to perform well on them, and needs
more iterations and presumably a larger n-best list to do so.
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Figure 7.3: Result obtained over 4 runs of the MERT tuner. Lines denote the mean,
the gray area around each line the standard deviation.

Candidate Translations
Iterations

BLEU

1 2 3 4 5

dutch jaap de hoop sche↵er assumed his functions on top of

nato

1 1 1 3 1 0.6396

dutchman jaap de hoop sche↵er assumed his duties at top of

nato

5 3 2 2 2 0.8165

dutchman jaap de hoop sche↵er holds its function to head

nato

6 2 3 1 3 0.5045

jaap de hoop sche↵er dutch assumed his functions on top of

nato

2 4 4 5 4 0.5839

dutch jaap de hoop sche↵er on top of nato assumed its tasks 3 6 6 8 5 0.6030

dutchman jaap de hoop sche↵er undertakes its tasks ras on

nato

4 5 5 7 6 0.4671

dutchman jaap de hoop sche↵er , will take o�ce at the head

of nato

7 7 7 4 7 0.5447

dutchman jaap de hoop sche↵er , will take o�ce at the head

of the north atlantic treaty organization

8 8 8 6 8 0.4042

dutchman jaap de hoop sche↵er takes over post at top of atlantic organization

Table 7.8: Ranking of an example n-best list is changing over 6 iterations of MERT.
In the perfect case, the BLEU scores would be ordered descending.
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Figure 7.4: Result obtained over 4 runs of the MIRA tuner. Lines denote the mean,
given that MIRA has a standard deviation of 0, it can not be seen.

In Table 7.8 (facing page), of which the workings are also introduced in the
beginning of section 7.2.2 (p. 54), we see that the order in which the candidate
translations are ranked does not change anymore after just 5 iterations. Looking
back at the line of MT04 in Figure 7.3 (facing page) this seems an expected result;
the figure shows a flat line. Overall, MERT performs well on this particular
example; translations with high BLEU scores are near the top, those with lower
scores near the bottom.

Performance and Behaviour of MIRA

The performance MIRA is rather di↵erent from that of MERT. MIRA is in fact
performing disappointingly bad, BLEU scores after convergence are below initial
scores, see Figure 7.4. Even on the development dataset. However, if we would
have stopped earlier, after 6 iterations, we would have observed slight progress,
especially on MT05, showing MIRA’s apparent generalisation capabilities. It
would, however, have been di�cult to stop earlier because MIRA was still making
improvements on the development set; the optimisation was not converged yet.
A reason for this behaviour might be that MIRA is not exploring enough; the
method is stuck in a local optimum. As MIRA is gathering more and more
evidence —in the form of n-best lists— of the shape of the area in weight-vector
space around this hill, it finds that the hill is not as high as it expected, but it
does not have the exploratory characteristics to do anything about it and find
the bigger hill. This performance can be blamed on the fact the MIRA is relying
on the sentence based BLEU. It has no sense of the bigger picture.
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Candidate Translations
Iterations

BLEU

1 2 3 4 5 6 7 8 9 10

dutchman jaap de hoop sche↵er , as-

sumed o�ce at the head of nato

1 1 1 1 1 1 1 1 1 1 0.5883

dutchman jaap de hoop sche↵er , as-

sumed his duties at the head of the

north atlantic treaty organization

5 5 5 5 5 4 4 4 4 2 0.4851

the dutch jaap de hoop sche↵er , as-

sumed his post at the head of nato

2 2 2 2 2 2 2 2 2 3 0.6055

dutchman jaap de hoop sche↵er , will

take o�ce at the head of nato

3 3 3 3 3 3 3 3 3 4 0.5447

dutchman jaap de hoop sche↵er holds

his post at the head of the north at-

lantic treaty organization

7 7 7 7 7 6 6 6 6 5 0.5145

dutchman jaap de hoop sche↵er , will

take o�ce on the top of the north

atlantic treaty organization

8 8 8 8 8 8 7 7 8 6 0.3835

dutchman jaap de hoop sche↵er as-

sume o�ce at the head of nato

4 4 4 4 4 5 5 5 5 7 0.6396

dutchman jaap de hoop sche↵er take

over his duties at the head of nato

6 6 6 6 6 7 8 8 7 8 0.7263

dutchman jaap de hoop sche↵er takes over post at top of atlantic organization

Table 7.9: Ranking of an example n-best list is changing over 10 iterations of MIRA.
In the perfect case, the BLEU scores would be ordered descending.

Another feature of MIRA worth mentioning is standard deviation of 0; all runs
perform exactly the same. A desirable but unexpected e↵ect given the random
restarts. This is partly due to the fact that MIRA bases its optimisation on
the set O, which is chosen independent of a specific w. In other words, MIRA
always uses the same set of sentence pairs to update a weight-vector w on,
and apparently the update rule completely overwhelms the initial value of the
weight-vector it was optimising.

Table 7.9 shows how MIRA is putting the better translation candidates at the
bottom of the list instead of at the top. Of course this could be a peculiarity of
this single sentence, but given the lack of BLEU score improvements this can
hardly be expected.

Looking back at Tables 7.6 (p. 51) and 7.7 (p. 52), we see that MIRA does not
show much improvement when more features are added. MIRA was developed
with a large number of features in mind (Chiang et al., 2009) while our result
shows that MIRA is the one approach that gaining much from the added features.
One explanation might be the very di↵erent nature of features we added when
compared to the work of Chiang et al. (2009). Most features in their work are
binary or at least nominal, where the features we add are probabilities and thus
of a continuous nature.

Performance and Behaviour of Simplex

The enormous drop in BLEU score of the Simplex method after one iteration
is characteristic for this method, see Figure 7.5 (next page). None of our other
methods shows a drop this deep. It seems that whatever knowledge was fed to
the method using an initial weight-vector values is lost right at the start. In a
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Figure 7.5: Result obtained over 4 runs of the Simplex tuner. Lines denote the mean,
the gray area around each line the standard deviation. The final results for MT08
is left out of the figure, but is 0.3469.

Candidate Translations
Iterations

BLEU

1 2 3 4 5

dutchman jaap de hoop sche↵er assumed his duties of nato 3 1 1 1 1 0.7746

the dutch jaap de hoop sche↵er assume his duties at the

head of nato

2 5 5 3 2 0.6504

dutchman jaap de hoop sche↵er take o�ce at the head of

nato

5 4 2 2 3 0.6396

the dutch jaap de hoop sche↵er assumed o�ce to head nato 1 3 4 4 4 0.5045

dutchman jaap de hoop sche↵er will function to head nato 4 2 3 5 5 0.5578

dutchman jaap de hoop sche↵er will take o�ce at the head

of nato

6 6 6 6 6 0.5883

dutchman jaap de hoop sche↵er , will take o�ce at the head

of the north atlantic treaty organization

7 7 7 7 7 0.4042

dutchman jaap de hoop sche↵er takes over post at top of atlantic organization

Table 7.10: Ranking of an example n-best list is changing over 5 iterations of Simplex
. In the perfect case, the BLEU scores would be ordered descending.
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Candidate Translations
Iterations

BLEU

1 2 3 4 5

the dutch jaap de hoop sche↵er assume his duties at the

head of nato

2 3 1 1 1 0.6504

dutchman jaap de hoop sche↵er take o�ce at the head of

nato

5 1 2 2 2 0.6396

the dutch jaap de hoop sche↵er assume the duties of nato 1 5 3 3 3 0.6030

the dutch jaap de hoop sche↵er assumed o�ce to head nato 3 6 4 4 4 0.5045

dutchman jaap de hoop sche↵er assumed his duties of nato 4 2 5 5 5 0.7746

dutchman jaap de hoop sche↵er will function to head nato 6 4 6 6 6 0.5578

dutchman jaap de hoop sche↵er will take o�ce at the head

of nato

7 7 7 7 7 0.5883

dutchman jaap de hoop sche↵er , will take o�ce at the

head of the north atlantic treaty organization

8 8 8 8 8 0.4042

dutchman jaap de hoop sche↵er takes over post at top of atlantic organization

Table 7.11: Ranking of an example n-best list is changing over 4 iterations of
LUS↵=1/100 . In the perfect case, the BLEU scores would be ordered descending.

sense this seems like a waste: we did not feed the initial weight-vector without a
reason, it holds a direction in weight-vector space that has been proved to work
reasonable. On the other hand, it also means that Simplex is not dependent
on a specific initialisation. When we also take the graph in Figure 7.1 (p. 53)
into account, we see the reason for the performance drop. The algorithm is
rather greedy, as we have mentioned before. Simplex rapidly finds the most
optimal point for an n-best list, but this weight-vector turns out to be far from
optimal when used to rerun the decoder; BLEU scores drop to almost zero. Also
note the wide variation in BLEU scores on even the development dataset after
convergence.

On our example translation in Table 7.10 (page before), Simplex does well. The
worst candidate translation is at the bottom, the best at the top.

Performance and Behaviour of LUS↵=1/100

As with most tuning approaches we discuss, LUS showcases the steep drop in
performance right after the first iteration, see Figure 7.6 (facing page). Not as
steep as with Simplex, but the BLEU score drops below the level of MERT,
MIRA and SVM-Rank. On top of that, the standard deviation at that point
is enormous; much larger than with any other method. It takes LUS↵=1/100

two more iterations to recover from these two blows to its performance and to
perform above initial level. After that, performance shows a stable but small
increase up the sixth iteration where LUS↵=1/100 converges.

Striking is the fact that the shape of both the mean and the standard deviation
for all datasets is similar. MT06 and MT08 are lower, MT05 higher than the
development set, but their shape is almost the same. This points to great
generalisation capabilities. While the small standard deviation after just 4
iterations points at stability.

Even though LUS↵=1/100 seems to be our best performing approach to tuning,
it is not extraordinary good at getting the ranking of our candidate translations
right. See Table 7.11.
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Figure 7.6: Result obtained over 4 runs of the LUS↵=1/100 tuner. Lines denote the
mean, the gray area the standard deviation.

Using a separate dataset, we estimated that a sample size of around 50,000
samples per iteration would give the best result. We only used our default 8
feature setting to perform that estimation, and were interested to see what would
happen if we varied the samples size for both the 8 feature case but also for the
extended 14 feature case. We run this experiment only on our development set,
MT04, and results are listed in Figure 7.7 (following page).

For the 8 feature case, the result agree with our estimation; 50,000 seems to
be the right number of samples. Surprisingly though, for the 14 feature setting
the peak in the graph lies around only 1,000 samples. While BLEU scores for
the higher dimensional setting are generally higher, this is mainly the case the
early peak up to 20,000 samples. For 100,000 samples both settings perform
on par with respect to the BLEU score. This result is counter intuitive; one
would expect that a higher dimensional space would benefit more from a larger
sample since the space grows exponential with the number of dimensions and the
samples would grow sparser if their number would not increase at the same rate.

One could argue that basing the above discussion only on experiments performed
on the development set is not conclusive. Since, even though runs with larger
samples perform worse on MT04 —our development set— this might be a feature
of the algorithm that avoids over-fitting. In other words, it would be a strength
of the algorithm if performance on the development dataset went down while it
went up on test sets. However, we tested 4 of the resulting weight-vectors from
this experiment on MT05, MT06 and MT08 as well, observing the same trends
as in Figure 7.7 (next page).

Beyond the discussion of which number of samples is the right one, we might
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want to look at other convergence criteria for LUS↵=1/100. One explanation of
the e↵ect observed in Figure 7.7 and discussed above might be the fact that
the learning rate q in the LUS algorithm is not dependent on the number of
samples. When a large number of samples are expected, one might prefer a
smaller learning rate, to zoom in at a slower pace. Since this learning rate —this
zooming in— is only applied when a new sample is worse than the best point
so far, zooming in will happen exponentially more often if the search space is
larger due to added dimensions. In higher dimensional spaces the probability for
a new sample to be worse than the best point is much larger. A solution to this
problem is either setting a di↵erent convergence criteria based on how far we
zoomed in; the size of d. Or making q dependent on the number of samples.

Performance and Behaviour of SVM-Rank

As with MIRA, SVM-Rank harms performance. On three out of four datasets
the BLEU score drops when comparing initial results with the final results.
Surprisingly it is not the development dataset but MT05 that sees an improvement
of 1.58 BLEU points. Performance on the other three sets drops with 1.6 unto
2.58 BLEU points. Reasons behind this behaviour should be sought in the same
direction as with MIRA. Again, this method is not optimising directly on the
corpus BLEU score, but on a local —sentence based— version of it. So, we have
more evidence that such a metric is not helpful when trying to optimise the
holistic variant. For none of the methods early stopping would have helped out
in this case, even though they all perform best after just three iterations.

Also, as with MIRA, the standard deviation is 0 despite the random restarts.
This should, however, not come as a surprise here as our OptimiseRank algorithm,
see Algorithm 6 (p. 45) is not using the initial weight-vector at all. The algorithm
only uses the n-best list for optimisation and this n-best list is the same for each
restart.

Figure 7.7: BLEU performance of LUS↵=1/100 on MT04 for both our default 8
feature setting, and the 14 feature setting when the sample size is varied. Scores
are obtained by rerunning the decoder, not by reranking an n-best list. The sample
size of 50,000 was chosen for the 8 feature setting, albeit on a di↵erent dataset, and
does indeed perform well for this default setting.
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Figure 7.8: Result obtained over 4 runs of the SVM-Rank tuner. Lines denote the
mean, however, no deviation was observed, so also no standard deviation is depicted.

7.2.3 Statistical Comparison of Approaches

As was mentioned before, in 7.1.5 (p. 50) and by Koehn (2004), it is impossible
to base preference for one system over another just on BLEU score di↵erences. In
the sense that it is hard to tell how much of a di↵erence in BLEU score is su�cient
to speak of a significant di↵erence in the statistical sense. Koehn introduced a
method, using Paired Bootstrap Resampling, as described in section 7.1.5 (p. 50),
that allows for drawing valid and strong conclusions.

We compared each of our systems pairwise with each other system by using
the same weight-vectors as in section 7.2.1 (p. 51) but now deployed on the
combination of all datasets, see section 7.1.5 (p. 48). The di↵erence in BLEU score
is noted, but more importantly the fractions of times one system outperforms
the other for a samples size of 300 and 3000. Table 7.12 (following page) list the
results.

From this table, we can conclude that MERT outperforms any other method8

although it is a very close call with LUS↵=1/100. Together, these two methods
perform significantly better, no matter the sample size, than any other method.

Given the results in Table 7.12 (next page), we can order our systems as follows,
from best to worst:

8
Note that we are using our own implementation of MERT but that it was compared, using

the same method, to the standard implementation of MERT that is distributed with MOSES.

Our version of MERT did slightly but not significantly better: 0.05/0.06 on a sample size of

3000.
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System comparison (conclusion)
BLEU
di↵erence

Sample Size

300 3000

MERT better than Simplex 0.0373 1.0 1.0
MERT better than LUS↵=0 0.0296 1.0 1.0
MERT better than SVM-Rank 0.0241 1.0 1.0
MERT better than MIRA 0.0124 0.75 1.0
MERT better than LUS↵=1/100 0.0013 0.15/0.01 0.37

LUS↵=1/100 better than Simplex 0.0360 1.0 1.0
LUS↵=1/100 better than LUS↵=0 0.0283 1.0 1.0
LUS↵=1/100 better than SVM-Rank 0.0228 0.98 1.0
LUS↵=1/100 better than MIRA 0.0200 0.99 1.0

MIRA better than Simplex 0.0144 0.77 1.0
MIRA better than LUS↵=0 0.0112 0.51 1.0
MIRA better than SVM-Rank 0.0057 0.23 0.73

SVM-Rank better than Simplex 0.0132 1.0 1.0
SVM-Rank better than LUS↵=0 0.0055 0.26 0.86

LUS↵=0 better than Simplex 0.0077 0.24 0.89

Table 7.12: We show, following Koehn (2004, Table 3) as described in section 7.1.5
(p. 50), how often a conclusion with p  0.05 is made for di↵erent system com-
parisons and sample size 300 and 3000. 0.15/0.01 means 15% correct and 1%
wrong conclusions. 5566 test sentences from Table 7.5 (p. 49) are resampled with
replacement 100 times into samples of size 300 and 3000.

MERT � LUS↵=1/100 >MIRA � SVM-Rank � LUS↵=0 � Simplex9

Statistical Comparison with More Features

The above results were obtained using our default 8 features. Below we investigate
what happens if we add our additional 6 feature of the lexicalised reordering
model, see section 7.1.4 (p. 48). We performed the exact same experiment as
above and obtained Table 7.13 (next page).

Things have changed: LUS↵=1/100 and Simplex moved up at the cost of MERT
and LUS↵=0 respectively. And MIRA moved down in the hierarchy making
place for SVM-Rank, LUS↵=0 and Simplex.

We can thus order our systems when applied to a setting with more features as
follows:

LUS↵=1/100 � MERT � SVM-Rank > Simplex > LUS↵=0 > MIRA

Here, the e↵ect of the learning rate ↵ on LUS shows strongly: LUS↵=1/100 is
performing best of all methods while LUS↵=0 is far down the ladder. Note also
how our new method SVM-Rank is outperforming existing methods Simplex

9
We use the notation “sys1 > sys2” to denote that sys1 is significantly better than sys2,

and “sys1 � sys2” to denote that sys1 would show significantly better than sys2 have we had

a larger sample size, see Koehn (2004).
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System comparison (conclusion)
BLEU
di↵erence

Sample Size

300 3000

LUS↵=1/100 better than MIRA 0.1219 1.0 1.0
LUS↵=1/100 better than LUS↵=0 0.0460 1.0 1.0
LUS↵=1/100 better than Simplex 0.0204 1.0 1.0
LUS↵=1/100 better than SVM-Rank 0.0056 0.3 0.9
LUS↵=1/100 better than MERT 0.0018 0.2/0.01 0.42

MERT better than MIRA 0.1201 1.0 1.0
MERT better than LUS↵=0 0.0442 1.0 1.0
MERT better than Simplex 0.0186 1.0 1.0
MERT better than SVM-Rank 0.0038 0.26 0.64

SVM-Rank better than MIRA 0.1163 1.0 1.0
SVM-Rank better than LUS↵=0 0.0404 1.0 1.0
SVM-Rank better than Simplex 0.0148 0.84 1.0

Simplex better than MIRA 0.1015 1.0 1.0
Simplex better than LUS↵=0 0.0256 1.0 1.0

LUS↵=0 better than MIRA 0.0759 1.0 1.0

Table 7.13: Just like Table 7.12 (facing page), but using 6 extra lexicalised reordering
features, see section 7.1.4 (p. 48). We show, following Koehn (2004, Table 3) as
described in section 7.1.5 (p. 50), how often a conclusion with p  0.05 is made for
di↵erent system comparisons and sample size 300 and 3000. 0.2/0.01 means 20%
correct and 1% wrong conclusions. 5566 test sentences from Table 7.5 (p. 49) are
resampled with replacement 100 times into samples of size 300 and 3000.

and MIRA. Perhaps most noteworthy, although covert in section 7.2.2 (p. 57), is
the failure of MIRA to cope with more features.

7.2.4 Resulting Weight-Vectors

Of course, the work in this thesis is more about methods of finding the optimal
weight-vector, and not so much about the resulting weight-vectors themselves. It
is, however, still instructive to see and discuss the result of these methods, once
they are converged. The final weight-vectors, that are the result of applying
each of the methods in this thesis, are listed in Table 7.14 (p. 67).

Looking at the weight-vector, we can see some trends. a) The word-penalty (w)
is always negative, while b) the phrase-penalty (t-5) is negative about half the
time. c) All other weights are almost always positive, with one exception; and
d) translation table weights (t-1 up to t-4) are mostly within range (0.2, 0.5).

However, what is probably most striking is that the two best performing systems
—MERT and LUS↵=1/100— produce very di↵erent weight-vectors, hinting at the
ruggedness of the optimisation surface.

Also note that the weight-vectors always have the absolute magnitude of maxi-
mum 1, this is because we rescale them back to this magnitude. We can to that
without harming performance, see section 3.1 (p. 10). Partly due to this scaling,
and partly despite the scaling many weights did not stay within the range they
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where sampled in. This is, however, not surprising. We did not require nor did
we build in any mechanism to keep the weight-vectors within these limits. We
perform the scaling to make weight-vectors comparable, and to prevent that
dot products with a weight-vector that has a high magnitude would cause an
overflow.

7.3 Error Analysis

This short section aims at describing where and why experimental results did
not live up to our theoretical expectations.

For one, MIRA does worse when more features are added, see section 7.2.3
(p. 64). While the algorithm was designed with many more features in mind
than we added. In fact, that might already be the reason. MIRA excels in very
high dimensional spaces, where the features outnumber the training examples.
Also, the type of features we added might not be of the right kind. Chiang et al.
(2009) add nominal and even binary features. In a sense we might not have
subjected MIRA to a fair comparison by only considering the situations MERT
was designed for.

Also SVM-Rank, as it is a similar algorithm to MIRA, might su↵er from the
same drawbacks. For this algorithm though, we also had to limit the number
of candidate translation pairs in order to make our algorithm feasible. These
restrictions dictated by time limits, definitely harmed performance.

The discussion in section 7.2.2 (p. 60), on the e↵ect of the sample size of our
LUS↵=1/100 method, deserves a place here. The fact that a larger sample size
in a higher dimensional space hurts performance is the opposite from what we
expected when we developed our algorithm. What happens is, that in higher
dimensional spaces less weight-vectors leading to an improvement are found, so
that the algorithm zooms in too quickly on an inferior optimum in weight-vector
space. When the algorithms zooms in too far —by sampling too often— it
over-fits the n-best list on an inferior optimum leading to worse performance,
even on the development set.

Other areas of expected but not observed results, are more di�cult to qualify,
because our experiments where not aimed at them. The fact that regularisation
in MERT, as proposed by Cer et al. (2008), did not lead to improvements is
noteworthy but not explainable by our experiments.
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Chapter 8

Conclusions

8.1 Summary

In this thesis we set out on exploring all aspects of tuning within the Statistical
Machine Translation (SMT) setting. Our investigation ranged from introducing
a uniform framework for tuning —optimising the weights of the log-linear model—
to recasting three existing methods in that framework. Comparing these three
methods led us to insights on which we based two new methods: Local Unimodal
Sampling (LUS) and SVM-Rank. Finally we compared all five approaches to
tuning empirically by running and evaluating experiments.

We were guided by the following three research questions. See section 1.3 (p. 4)
for an elaboration.

1. What factors of Tuning in SMT make it a hard problem?

2. How do existing Tuning methods for SMT compare?

3. What factors lead to improvements in new Tuning methods for SMT?

Question 1 has largely been answered in Chapter 3 (p. 10), which is summarised
in section 3.4 (p. 19). We can conclude that tuning in SMT is di�cult because
it is a black-box optimisation problem with some peculiarities. Computing the
gradient of the objective function is impossible. Our objective function —BLUE—
is holistic, making evaluation computationally expensive. Besides, the piece-
wise constant nature of our problem prohibits indirect inference of a gradient.
Furthermore, running a decoder —which is necessary for perfect evaluation— is
prohibitively expensive, forcing us to perform approximated evaluations instead.

The second question is discussed and answered in Chapter 5 (p. 32) describing a
comparison and in Chapter 7 (p. 46) describing our experiments. We conclude
that MERT outperforms both MIRA and Simplex significantly. While MIRA
performs significantly better than Simplex on our default 8 feature setting and
vice versa on our extended 14 feature setting. Both MERT and Simplex use the
holistic BLEU function as their optimisation objective, giving them an advantage
over MIRA which relies on a sentence based approximation. The reason why
Simplex is not performing on par with MERT is that Simplex is too aggressively
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climbing the first hill it encounters. One of the keys to the success of MERT
are its random restarts. MIRA’s standard deviation is 0, it does nothing with a
random restart.

Our last question is answered throughout chapter 5, 6 and 7. The comparison
in Chapter 5 (p. 32) led up to a discussion of opportunities for improvements
in its summarising section 5.4 (p. 37). Of which some were realised in our two
new approaches to tuning, as described in Chapter 6 (p. 39). An empirical
comparison in Chapter 7 (p. 46) tells us that our LUS approach indeed is an
improvement over the state-of-the-art. While our other new approach —SVM-
Rank— does not give us the expected progress. We attribute the success of
LUS to its exploratory qualities which are well in balance with the exploitation
of directions in weight-vector space that proved fruitful. The failure of our
SVM-Rank approach can be attributed to its use of a local instead of holistic
objective function and to the fact that the method is not incorporating the
initial weight-vector nor random restarts. To reiterate, the factors that led to
improvements are a good balance between exploration and exploitation, the use
of initial starting points and random restarts and the use of the holistic BLEU
function instead of an approximation.

In short, we claim the following contributions to the field of Statistical Ma-
chine Translation and tuning the parameters of the log-linear model within
Phrase-Based SMT in particular. We made significant improvements, with our
LUS↵=1/100 approach, over the state-of-the-art tuning method MERT, within a
realistic setting with 14 features. Moreover, this thesis provides an elaborate
overview and comparison of existing work in the field by recasting three existing
and two new methods in the same terminology and wording.

8.2 Open Issues

Some open issues remain. First of all, the experiments could be extended into
several directions. To name a few: a) SVM-Rank might perform relatively good
on out-of-domain data, we still expect our algorithm to generalise relatively well
towards data very di↵erent from our development set. This should be tested.
b) We performed some investigation into the sample size most suited for LUS.
We do not claim our results to be conclusive and think further investigation is
justified and promising. c) As we mentioned in our conclusions, methods like
MIRA and SVM-Rank might benefit strongly from adding nominal or binary
features. Extending the dimensionality far beyond our maximum of 14 might
give them the opportunity to show their strength. At the same time we would
be interested to see the behaviour of LUS in such circumstances.

Regarding our new approaches, some possible improvements can be made. As
mentioned in section 7.2.2 (p. 60) more work on defining a convergence criteria
and a learning rate for LUS will be worth the e↵ort. For SVM-Rank it might be
beneficial to find a way to incorporate initial weight-vector. Also, taking the first
30 sentences according to BLEU from the n-best list might not be the ideal way.
Selecting these as in MIRA or using a sampling approach might be beneficial.
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Appendix A

Distribution of BLEU

(a) d(f , e) (b) p(e) (c) p(f |e)

(d) lex(f |e) (e) p(e|f) (f) lex(e|f)

(g) e1 (h) w(e)

Figure A.1: Distribution of BLEU score per dimension of the weight-vector. These
graphs are obtained by retrieving 1000-best lists from the decoder with an initial
weight-vector and then varying the weight-vector in each dimension at at a time
while keeping all other dimensions constant. As far as these graphs can show it, all
but the word penalty graph have a unimodal shape. See also section 7.1.1 (p. 46).
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