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3. Filter short sessions: After removing navigational queries 
and segmenting the logs into topically coherent sessions, we 
exclude sessions with less than three unique queries since 
these are unlikely to be exploring or struggling sessions. 

We applied these criteria to identify long topically-coherent ses-
sions because there are sessions in which users are likely to show 
exploring or struggling behavior. There were many thousands of 
such sessions in our data. We sampled 3000 of them and instructed 
external human judges to examine each session, try to understand 
the user’s experience, and identify the reason for the observed be-
havior. We now describe the process by which the labels were col-
lected from external judges. 

3.3 Labeling Exploring and Struggling 
Judges were recruited from the crowdsourcing service Click-
worker.com, which provided access to crowd workers under con-
tract. Judges resided in the United States and were fluent in English. 
Judges were shown sessions such as those illustrated in Figure 1. 
The interface was similar to Figure 1, and showed all queries, result 
clicks, and timestamps of all actions in the search session. They 
were instructed to examine the queries, the results pages (by click-
ing the “Query” text), the clicked pages, and to label the sessions 
as: exploring, exploring with struggle, or struggling. They were 
shown the definitions of exploring and struggling sessions using the 
same text as in the definitions provided in Section 3.1. Addition-
ally, the following definition for exploring with struggle sessions 
was provided to judges:  
Definition: Exploring with struggle sessions are exploring sessions 
where the user had experienced some difficulty in locating infor-
mation about one or more of the facets being explored. 
Judges were also instructed to label sessions with completely unre-
lated queries or sessions in a foreign language as “cannot judge”. 
Figure 2 shows the distribution of labels collected from the judges. 
Judges excluded only 1% of the sessions as having unrelated que-
ries or queries in a foreign language. Around 40% of the sessions 
were labeled as exploring, 23% as exploring with struggle, and the 

remaining 36% as struggling sessions. In total, the data set con-
sisted of 3000 sessions with 17,117 queries, 13,168 distinct queries, 
and 13,780 result clicks. 
We also asked the judges to assess the success of each session using 
the following labels: 

x Successful: Sessions where searchers were able to locate the 
required information. 

x Partially Successful: Sessions were searchers failed to locate 
some of the required information. 

x Unsuccessful: Sessions where searchers failed to locate the 
required information. 

Note that struggling is a characterization of the search process 
while success is a characterization of its outcome. Hence it is pos-
sible for a user who has difficulty locating the required information 
(struggling) to end up locating it (success). It is also possible for a 
user to fail in locating the required information without struggling 
(e.g., submit a single unsuccessful query then give up). 
The distribution of success labels across session types is shown in 
Figure 3. The figure shows that most of the exploring sessions are 
successful (more than 75%) or partially successful (more than 
20%). This agrees with our definition of exploring sessions, which 
are open-ended and multi-faceted in nature. Hence, failing to locate 
the required information is likely to prevent exploring early on in 
the session and in the cases when exploring does happen, the ses-
sion is typically either successful or partially successful. Struggling 
sessions have a different success profile, with fewer sessions being 
successful (less than 50%) and more than 15% being unsuccessful.  
The Cohen’s kappa (κ) of inter-rater agreement is 0.59 for the ex-
ploring vs. struggling label, and 0.62 for the successful vs. unsuc-
cessful label, signifying good agreement according to [8]. In both 
cases, we considered binary labels with exploring and exploring 
with struggle belonging to one class and struggling in the other. For 
the success label, successful was treated as one class and partially 
successful and unsuccessful were treated as another class. We use 
the same binary labels in the prediction task described later. 

4. CHARACTERIZING EXPLORING AND 
STRUGGLING BEHAVIOR 
In this section, we examine several characteristics of exploring and 
struggling sessions focusing on queries, result clicks, and topical 
dimensions. 

4.1 Query Characteristics 
At the outset of our analysis, we examine a number of different as-
pects of the session queries: (1) the number of unique queries, (2) 
similarity between queries, and (3) the nature of query transitions. 
Number of unique queries: As described earlier, both exploring 
and struggling sessions are long by definition. One interesting ques-
tion is whether exploring or struggling leads to longer sessions. If 
this was the case, then session length could be employed to discrim-
inate between exploring and struggling. To answer this question, 
we compute the distribution over the number of unique queries for 
both types of session. We used unique queries to avoid counting the 
same query multiple times when the user refreshes the search page 
or hits the back button. The average number of unique queries per 
session was 4.50 and 4.36 for the exploring and struggling sessions 
respectively. The difference between the numbers of unique queries 
in the two search situations is not statistically significant at the 0.05 
level according to a two-tailed t-test, suggesting that this is unlikely 
to be a distinguishing factor.  

Figure 2. Session type distribution as labeled by judges. 

Figure 3. Session success distribution as labeled by judges. 
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Figure 3. Session success distribution as labeled by judges. 
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Motivation
• Long web search sessions are common

• Half of web search sessions contain multiple 
queries [Shokouhi et al., SIGIR’13]

• 40% of sessions take 3+ minutes [Dumais, NSF'13]
• Account for most of search time

• What are searchers doing? Struggling or Exploring. 
[Hassan et al., WSDM’14]

• Struggling in 60% of long sessions, often successful

3. Filter short sessions: After removing navigational queries 
and segmenting the logs into topically coherent sessions, we 
exclude sessions with less than three unique queries since 
these are unlikely to be exploring or struggling sessions. 

We applied these criteria to identify long topically-coherent ses-
sions because there are sessions in which users are likely to show 
exploring or struggling behavior. There were many thousands of 
such sessions in our data. We sampled 3000 of them and instructed 
external human judges to examine each session, try to understand 
the user’s experience, and identify the reason for the observed be-
havior. We now describe the process by which the labels were col-
lected from external judges. 

3.3 Labeling Exploring and Struggling 
Judges were recruited from the crowdsourcing service Click-
worker.com, which provided access to crowd workers under con-
tract. Judges resided in the United States and were fluent in English. 
Judges were shown sessions such as those illustrated in Figure 1. 
The interface was similar to Figure 1, and showed all queries, result 
clicks, and timestamps of all actions in the search session. They 
were instructed to examine the queries, the results pages (by click-
ing the “Query” text), the clicked pages, and to label the sessions 
as: exploring, exploring with struggle, or struggling. They were 
shown the definitions of exploring and struggling sessions using the 
same text as in the definitions provided in Section 3.1. Addition-
ally, the following definition for exploring with struggle sessions 
was provided to judges:  
Definition: Exploring with struggle sessions are exploring sessions 
where the user had experienced some difficulty in locating infor-
mation about one or more of the facets being explored. 
Judges were also instructed to label sessions with completely unre-
lated queries or sessions in a foreign language as “cannot judge”. 
Figure 2 shows the distribution of labels collected from the judges. 
Judges excluded only 1% of the sessions as having unrelated que-
ries or queries in a foreign language. Around 40% of the sessions 
were labeled as exploring, 23% as exploring with struggle, and the 

remaining 36% as struggling sessions. In total, the data set con-
sisted of 3000 sessions with 17,117 queries, 13,168 distinct queries, 
and 13,780 result clicks. 
We also asked the judges to assess the success of each session using 
the following labels: 

x Successful: Sessions where searchers were able to locate the 
required information. 

x Partially Successful: Sessions were searchers failed to locate 
some of the required information. 

x Unsuccessful: Sessions where searchers failed to locate the 
required information. 

Note that struggling is a characterization of the search process 
while success is a characterization of its outcome. Hence it is pos-
sible for a user who has difficulty locating the required information 
(struggling) to end up locating it (success). It is also possible for a 
user to fail in locating the required information without struggling 
(e.g., submit a single unsuccessful query then give up). 
The distribution of success labels across session types is shown in 
Figure 3. The figure shows that most of the exploring sessions are 
successful (more than 75%) or partially successful (more than 
20%). This agrees with our definition of exploring sessions, which 
are open-ended and multi-faceted in nature. Hence, failing to locate 
the required information is likely to prevent exploring early on in 
the session and in the cases when exploring does happen, the ses-
sion is typically either successful or partially successful. Struggling 
sessions have a different success profile, with fewer sessions being 
successful (less than 50%) and more than 15% being unsuccessful.  
The Cohen’s kappa (κ) of inter-rater agreement is 0.59 for the ex-
ploring vs. struggling label, and 0.62 for the successful vs. unsuc-
cessful label, signifying good agreement according to [8]. In both 
cases, we considered binary labels with exploring and exploring 
with struggle belonging to one class and struggling in the other. For 
the success label, successful was treated as one class and partially 
successful and unsuccessful were treated as another class. We use 
the same binary labels in the prediction task described later. 

4. CHARACTERIZING EXPLORING AND 
STRUGGLING BEHAVIOR 
In this section, we examine several characteristics of exploring and 
struggling sessions focusing on queries, result clicks, and topical 
dimensions. 

4.1 Query Characteristics 
At the outset of our analysis, we examine a number of different as-
pects of the session queries: (1) the number of unique queries, (2) 
similarity between queries, and (3) the nature of query transitions. 
Number of unique queries: As described earlier, both exploring 
and struggling sessions are long by definition. One interesting ques-
tion is whether exploring or struggling leads to longer sessions. If 
this was the case, then session length could be employed to discrim-
inate between exploring and struggling. To answer this question, 
we compute the distribution over the number of unique queries for 
both types of session. We used unique queries to avoid counting the 
same query multiple times when the user refreshes the search page 
or hits the back button. The average number of unique queries per 
session was 4.50 and 4.36 for the exploring and struggling sessions 
respectively. The difference between the numbers of unique queries 
in the two search situations is not statistically significant at the 0.05 
level according to a two-tailed t-test, suggesting that this is unlikely 
to be a distinguishing factor.  

Figure 2. Session type distribution as labeled by judges. 

Figure 3. Session success distribution as labeled by judges. 
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3. Filter short sessions: After removing navigational queries 
and segmenting the logs into topically coherent sessions, we 
exclude sessions with less than three unique queries since 
these are unlikely to be exploring or struggling sessions. 

We applied these criteria to identify long topically-coherent ses-
sions because there are sessions in which users are likely to show 
exploring or struggling behavior. There were many thousands of 
such sessions in our data. We sampled 3000 of them and instructed 
external human judges to examine each session, try to understand 
the user’s experience, and identify the reason for the observed be-
havior. We now describe the process by which the labels were col-
lected from external judges. 

3.3 Labeling Exploring and Struggling 
Judges were recruited from the crowdsourcing service Click-
worker.com, which provided access to crowd workers under con-
tract. Judges resided in the United States and were fluent in English. 
Judges were shown sessions such as those illustrated in Figure 1. 
The interface was similar to Figure 1, and showed all queries, result 
clicks, and timestamps of all actions in the search session. They 
were instructed to examine the queries, the results pages (by click-
ing the “Query” text), the clicked pages, and to label the sessions 
as: exploring, exploring with struggle, or struggling. They were 
shown the definitions of exploring and struggling sessions using the 
same text as in the definitions provided in Section 3.1. Addition-
ally, the following definition for exploring with struggle sessions 
was provided to judges:  
Definition: Exploring with struggle sessions are exploring sessions 
where the user had experienced some difficulty in locating infor-
mation about one or more of the facets being explored. 
Judges were also instructed to label sessions with completely unre-
lated queries or sessions in a foreign language as “cannot judge”. 
Figure 2 shows the distribution of labels collected from the judges. 
Judges excluded only 1% of the sessions as having unrelated que-
ries or queries in a foreign language. Around 40% of the sessions 
were labeled as exploring, 23% as exploring with struggle, and the 

remaining 36% as struggling sessions. In total, the data set con-
sisted of 3000 sessions with 17,117 queries, 13,168 distinct queries, 
and 13,780 result clicks. 
We also asked the judges to assess the success of each session using 
the following labels: 

x Successful: Sessions where searchers were able to locate the 
required information. 

x Partially Successful: Sessions were searchers failed to locate 
some of the required information. 

x Unsuccessful: Sessions where searchers failed to locate the 
required information. 

Note that struggling is a characterization of the search process 
while success is a characterization of its outcome. Hence it is pos-
sible for a user who has difficulty locating the required information 
(struggling) to end up locating it (success). It is also possible for a 
user to fail in locating the required information without struggling 
(e.g., submit a single unsuccessful query then give up). 
The distribution of success labels across session types is shown in 
Figure 3. The figure shows that most of the exploring sessions are 
successful (more than 75%) or partially successful (more than 
20%). This agrees with our definition of exploring sessions, which 
are open-ended and multi-faceted in nature. Hence, failing to locate 
the required information is likely to prevent exploring early on in 
the session and in the cases when exploring does happen, the ses-
sion is typically either successful or partially successful. Struggling 
sessions have a different success profile, with fewer sessions being 
successful (less than 50%) and more than 15% being unsuccessful.  
The Cohen’s kappa (κ) of inter-rater agreement is 0.59 for the ex-
ploring vs. struggling label, and 0.62 for the successful vs. unsuc-
cessful label, signifying good agreement according to [8]. In both 
cases, we considered binary labels with exploring and exploring 
with struggle belonging to one class and struggling in the other. For 
the success label, successful was treated as one class and partially 
successful and unsuccessful were treated as another class. We use 
the same binary labels in the prediction task described later. 

4. CHARACTERIZING EXPLORING AND 
STRUGGLING BEHAVIOR 
In this section, we examine several characteristics of exploring and 
struggling sessions focusing on queries, result clicks, and topical 
dimensions. 

4.1 Query Characteristics 
At the outset of our analysis, we examine a number of different as-
pects of the session queries: (1) the number of unique queries, (2) 
similarity between queries, and (3) the nature of query transitions. 
Number of unique queries: As described earlier, both exploring 
and struggling sessions are long by definition. One interesting ques-
tion is whether exploring or struggling leads to longer sessions. If 
this was the case, then session length could be employed to discrim-
inate between exploring and struggling. To answer this question, 
we compute the distribution over the number of unique queries for 
both types of session. We used unique queries to avoid counting the 
same query multiple times when the user refreshes the search page 
or hits the back button. The average number of unique queries per 
session was 4.50 and 4.36 for the exploring and struggling sessions 
respectively. The difference between the numbers of unique queries 
in the two search situations is not statistically significant at the 0.05 
level according to a two-tailed t-test, suggesting that this is unlikely 
to be a distinguishing factor.  

Figure 2. Session type distribution as labeled by judges. 

Figure 3. Session success distribution as labeled by judges. 
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Example of Struggling
Logged session from June 2014



9:13:11 AM �Query us open

9:13:24 AM �Query us open golf

9:13:36 AM �Query us open golf 2013 live

9:13:59 AM �Query watch us open live streaming

9:14:02 AM �Click http://inquisitr.com/1300340/watch-2014-u-s-
open-live-online-final-round-free-streaming-video 

9:31:55 AM END
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Pivotal Query
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Example of Struggling
Logged session from June 2014

Pivotal Query

How & why do searchers struggle?
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How do searchers go from struggle to success?

Pivotal Query

How & why do searchers struggle?



9:13:11 AM �Query us open

9:13:24 AM �Query us open golf

9:13:36 AM �Query us open golf 2013 live
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open-live-online-final-round-free-streaming-video 

9:31:55 AM END

Example of Struggling
Logged session from June 2014

How do searchers go from struggle to success?
Can we help them struggle less?

Pivotal Query

How & why do searchers struggle?



Characterizing Struggling

Annotating Query Transitions

Predicting Future Actions

Outline



Characterizing Struggling

Annotating Query Transitions

Predicting Future Actions

Outline

Struggling searchers behave differently given different 
outcomes on many search aspects, including: 

queries, reformulations, clicks, dwell time & topic.



June 1–7, 2014

1. Filter sessions: US & English, start with a typed query
2. Segment into tasks: Topically coherent sub-sessions with at least 3 queries
3. Filter struggling tasks [Hassan et al., WSDM’14]
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June 1–7, 2014

1. Filter sessions: US & English, start with a typed query
2. Segment into tasks: Topically coherent sub-sessions with at least 3 queries
3. Filter struggling tasks [Hassan et al., WSDM’14]
4. Partition based on final clicks

First 
Query

Second 
Query

Last 
Query

2,937,450
Successful

Tasks

4,508,821
Unsuccessf

ul

…

No click or dwell time < 10s

Dwell time > 30s or end of task

Commonly used 
proxy for success.

Identifying Struggling Sessions
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Annotating Query Transitions

Predicting Future Actions

Outline

Struggling searchers in successful vs unsuccessful tasks 
issue fewer and shorter queries. Query reformulations 

indicate more trouble choosing correct vocabulary. 



Characterizing Struggling

Annotating Query Transitions

Predicting Future Actions

Outline

Struggling searchers in successful vs unsuccessful tasks 
issue fewer and shorter queries. Query reformulations 

indicate more trouble choosing correct vocabulary. 

Crowd-sourcing to better understand: connection between 
struggling and success & query transitions.  

First an exploratory pilot, then main annotations.



Intent-based query 
reformulation taxonomy

Added, removed 
or substituted 

☐ an action (e.g., download, contact)
☐ an attribute (e.g., printable, free, )

Specified ☐ a particular instance  
    (e.g. added a brand name or version number)

Rephrased ☐ Corrected a spelling error or typo 
☐ Used a synonym or related term

Switched ☐ to a related task (changed main focus) 
☐ to a new task

Based on the answers to the open-ended questions



Main Annotations: 
Transitions in 659 successful tasks

• Annotated 659 new successful tasks 

• Single tasks, no pairs 

• Annotated transitions between each query pair

First 
Query

Second 
Query

Last 
Query 2,937,450

Successful
Tasks

…







Success & Pivotal Query

19% 40% 39%

not at all somewhat mostly completely

Task Success
Made at least  

some progress



Success & Pivotal Query

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Pivotal Query

0

50

100

150

200

N
um

be
r o

f t
as

ks

Continued
Final Query

19% 40% 39%

not at all somewhat mostly completely

Task Success
Made at least  

some progress

Location of the pivotal query



Success & Pivotal Query

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Pivotal Query

0

50

100

150

200

N
um

be
r o

f t
as

ks

Continued
Final Query

19% 40% 39%

not at all somewhat mostly completely

Task Success
Made at least  

some progress

62%

Location of the pivotal query



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query
Removed Action

Corrected Typo

Substituted Action

Switched to New

Rephrased w/Synonym

Added Action

Removed Attribute

Switched to Related

Substituted Attribute

Specified Instance

Added Attribute

25% 50% 25% 11%

21% 53% 26% 6%

19% 50% 27% 15%

46% 29% 25% 13%

25% 36% 36% 13%

19% 41% 39% 8%

12% 54% 34% 12%

22% 40% 33% 10%

16% 47% 34% 6%

30% 32% 36% 12%

14% 45% 40% 11%

not at all somewhat mostly completely  | pivotal



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query
Removed Action

Corrected Typo

Substituted Action

Switched to New

Rephrased w/Synonym

Added Action

Removed Attribute

Switched to Related

Substituted Attribute

Specified Instance

Added Attribute

25% 50% 25% 11%

21% 53% 26% 6%

19% 50% 27% 15%

46% 29% 25% 13%

25% 36% 36% 13%

19% 41% 39% 8%

12% 54% 34% 12%

22% 40% 33% 10%

16% 47% 34% 6%

30% 32% 36% 12%

14% 45% 40% 11%

not at all somewhat mostly completely  | pivotal



Query Transitions

Added Attribute

Specified Instance

Substituted Attribute

Switched to Related

Removed Attribute

Rephrased w/Synonym

Added Action

Switched to New

Substituted Action

Corrected Typo

Removed Action

465

374

203

179

99

91

80

46

41

34

18

Query Transition

From first query

Others

To final query
Removed Action

Corrected Typo

Substituted Action

Switched to New

Rephrased w/Synonym

Added Action

Removed Attribute

Switched to Related

Substituted Attribute

Specified Instance

Added Attribute

25% 50% 25% 11%

21% 53% 26% 6%

19% 50% 27% 15%

46% 29% 25% 13%

25% 36% 36% 13%

19% 41% 39% 8%

12% 54% 34% 12%

22% 40% 33% 10%

16% 47% 34% 6%

30% 32% 36% 12%

14% 45% 40% 11%

not at all somewhat mostly completely  | pivotal



Characterizing Struggling

Annotating Query Transitions

Predicting Future Actions

Outline

Substantial differences in how searchers refine queries 
in different stages in a struggling task. Strong connections 

with task outcomes, and particular pivotal queries.

Struggling searchers, successful or not, behave 
differently on many search aspects, including: 

queries, reformulations, clicks, dwell time & topic.
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Characterizing Struggling

Annotating Query Transitions

Predicting Future Actions

Outline

Accurately predict reformulation strategy to 
provide situation-specific support at a higher level.

Substantial differences in how searchers behave  
in a struggling task, depending on task outcomes.
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Limitations

• Very specific and apparent type of struggling
• Determination of search success 

• Final click as a proxy 
• Judgements by third-party, not by searchers 

themselves
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Future Work
• Directly applying reformulation strategies

• Query suggestions & auto-completions

• Mining query ➣ pivotal query pairs

• Can identify automatically: F1 59%  
(final query baseline: 51%)

• Hints and tips on reformulation strategies
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with a single 
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@anneschuth

Our editors select the 
best articles for our 
email newsletter 
every day
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•Should be personalised
•Lots of content
•Lots of different tastes

•Can be personalised
•We know what our users read
•What they didn’t like
•When they read
•…
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Timing problem
•Our editors wake up at 5am 
and are done reading at 
8am

•Which is also when we want 
to send our newsletter

•We simply can’t wait for a 
batch process



Cold start problem
•>6K new articles every night 
•Our newsletter is an 
important traffic driver 

•No usage info to rank the 
newsletter before we send 
the newsletter
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Author 
extraction
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Sentiment
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Stylometry
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RecognitionPoS-tagging

Length, word 
variation, vocabulary 
richness, …

Polarity scores 
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@anneschuth
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Spark LDA 
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Learning to Rank
• What can possibly go wrong?

• Clicks are biased
• users won’t click on things you didn’t show them
• user are likely to click on things that appear high
• it matters how you present documents

• snippets, images, colors, font size, grouped with other 
documents
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… 
Î regression?   Challenge: Design feature-specific 

metrics in a way that they are aligned 
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•What can possibly go wrong?

•Clicks are biased
•Clicks are noisy

•They don’t always mean what you hope
•Even with refunds

•Absence of clicks is not necessarily negative
•Users might learn enough from snippets
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Better studied, so more 
ML tools. 

Not easily adaptable as 
things change. 

Often (but not always) 
the method requires 
explicit annotations.

Better for a dynamic 
environnement 

More sample efficient 
since the algorithm plays 
an active role. 

Can't (easily) go back 
and retrain.

Offline Learning Online Learning

Offline vs Online



Timing problem
•Our editors wake up at 5am 
and are done reading at 
8am 

•Which is also when we want 
to send our newsletter 

•We simply can’t wait for a 
batch process
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Cold start problem

•So we enrich our 
content



Timing problem

•So we precompute 
as much as 
possible



Components 
we use for 
Machine 
Learning

@anneschuth



Components 
we use for 
Machine 
Learning

@anneschuth

Spark 
- processing large data



Components 
we use for 
Machine 
Learning

@anneschuth

Spark 
- processing large data



Components 
we use for 
Machine 
Learning

@anneschuth

Spark 
- processing large data

MLlib

MLib 
- production ML



Components 
we use for 
Machine 
Learning

@anneschuth

Spark 
- processing large data

MLlib

MLib 
- production ML

S3 
- raw content



Components 
we use for 
Machine 
Learning

@anneschuth

Spark 
- processing large data

MLlib

MLib 
- production ML

S3 
- raw content



Components 
we use for 
Machine 
Learning

@anneschuth

Database 
- data warehouse

Spark 
- processing large data

MLlib

MLib 
- production ML

S3 
- raw content



Components 
we use for 
Machine 
Learning

@anneschuth

Database 
- data warehouse

Spark 
- processing large data

MLlib

MLib 
- production ML

S3 
- raw content

Luigi 
- plumbing



Components 
we use for 
Machine 
Learning

@anneschuth

Database 
- data warehouse

Spark 
- processing large data

Scikitlearn 
- experimental ML

MLlib

MLib 
- production ML

S3 
- raw content

Luigi 
- plumbing



Components 
we use for 
Machine 
Learning

@anneschuth

Database 
- data warehouse

Spark 
- processing large data

Elastic Search 
- fast search and access

Scikitlearn 
- experimental ML

MLlib

MLib 
- production ML

S3 
- raw content

Luigi 
- plumbing



Components 
we use for 
Machine 
Learning

@anneschuth

Database 
- data warehouse

Spark 
- processing large data

Elastic Search 
- fast search and access

Scikitlearn 
- experimental ML

MLlib

MLib 
- production ML

Redis 
- fast access 

S3 
- raw content

Luigi 
- plumbing



Components 
we use for 
Machine 
Learning

@anneschuth

Kafka 
- streamingDatabase 

- data warehouse

Spark 
- processing large data

Elastic Search 
- fast search and access

Scikitlearn 
- experimental ML

MLlib

MLib 
- production ML

Redis 
- fast access 

S3 
- raw content

Luigi 
- plumbing



Components 
we use for 
Machine 
Learning

@anneschuth

Kafka 
- streamingDatabase 

- data warehouse

Spark 
- processing large data

Elastic Search 
- fast search and access

Scikitlearn 
- experimental ML

MLlib

MLib 
- production ML

Redis 
- fast access 

S3 
- raw content

Docker + Kubernetes 
- containerisation

Luigi 
- plumbing



Components 
we use for 
Machine 
Learning

@anneschuth

Kafka 
- streamingDatabase 

- data warehouse

Spark 
- processing large data

Elastic Search 
- fast search and access

Scikitlearn 
- experimental ML

MLlib

MLib 
- production ML

Redis 
- fast access 

S3 
- raw content

Cucumber 
- BDD development

Docker + Kubernetes 
- containerisation

Luigi 
- plumbing
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Internship Ideas
•Computer Vision

•Death Recognition
•‘Share from the newspaper’
•Find Replacement Images 
•Sudoku

•Machine Learning
•Editorial Pick Prediction
•Blinder™, a Tinder-like app for reading articles
•Explanations of why we recommend

•NLP
•‘Here’s the Blendle link’ Twitter bot
•Reactions on Twitter



Thank You

@anneschuth


